
2
1
TEXT, TEXTEDIT, DATES, TIMES, AND
NUMBERS
 Demonstration Programs: MonoTextEdit and
DateTimeNumbers

Introduction
The subject of text on the Macintosh is quite a complex matter, involving as it does QuickDraw, TextEdit,
the Font Manager, the Text Utilities, the Script Manager, the Text Services Manager, Apple Type Services
for Unicode Imaging, the Resource Manager, keyboard resources, and international resources. Part of that
complexity arises from the fact that the system software supports many different writing systems, including
Roman, Chinese, Japanese, Hebrew, and Arabic.1

Text on the Macintosh was touched on briefly at Chapter 12, which included descriptions of QuickDraw
functions used for drawing text and for setting the font, style, size, and transfer mode. Chapter 15
contained a brief treatment of considerations applying to the printing of text. Chapter 26 addresses the
Multilingual Text Engine (MLTE) introduced with Mac OS 9.
This chapter addresses:

 TextEdit, which you can use to provide your application with basic text editing and formatting
capabilities.

Note that the emphasis in this chapter is on monostyled TextEdit. With the introduction, with Mac
OS 9, of the Multilingual Text Engine (see Chapter 26), it became all but inconceivable that
programmers would ever again use multistyled TextEdit to provide their applications with multi-
styled text editing capabilities. Accordingly, in the following, multistyled TextEdit is addressed
only to the extent necessary to support an understanding of the display of non-editable multi-styled

1 Some of the information in this chapter is valid only in the case of the Roman writing system.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-1

text, as in the Help dialog component of the demonstration program MonoTextEdit associated with
this chapter.
 The formatting and display of dates, times, and numbers.

Before addressing those particular subjects, however, a brief overview of various closely related matters is
appropriate.

More on Text

Characters, Character Sets and Codes, Glyphs, Typefaces,
Styles, Fonts and Font Families
Characters and Character Sets and
Codes

A character is a symbol which represents the concept of, for example, a lowercase "b", the number "2" or
the arithmetic operator "+". A collection of characters is called a character set. Individual characters
within a character set are identified by a character code.
The Apple Standard Roman character set is the fundamental character set for the Macintosh computer.
As shown at Fig 1, it uses all character codes from 0x00 to 0xFF. The Standard Roman character set is
actually an extended version of the ASCII character set, which uses character codes from 0x00 to 0x7F
only, and which is highlighted at Fig 1.

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
x0 nul dle sp 0 @ P ` p Ä ê † ∞ ¿ – ‡ �
x1 soh DC1 ! 1 A Q a q Å ë ° ± ¡ — · Ò
x2 stx DC2 " 2 B R b r Ç í ¢ ≤ ¬ “ ‚ Ú
x3 etx DC3 # 3 C S c s É ì £ ≤ √ ” „ Û
x4 eot DC4 $ 4 D T d t Ñ î § ¥ ƒ ‘ ‰ Ù
x5 enq nak % 5 E U e u Ö ï • µ ≈ ’ Â ı
x6 ack syn & 6 F V f v Ü ñ ¶ ∂ ∆ ÷ Ê ˆ
x7 bel etb ' 7 G W g w á ó ß ∑ « ◊ Á ˜
x8 bs can (8 H X h x à ò ® ∏ » ÿ Ë ¯
x9 ht em) 9 I Y i y â ô © π … Ÿ È ˘
xA lf sub * : J Z j z ä ö ™ ∫ ⁄ Í ˙
xB vt esc + ; K [k { ã õ ´ ª À ¤ Î ˚
xC ff fs , < L \ l | å ú ¨ º Ã ‹ Ï ¸
xD cr gs - = M] m } ç ù ≠ Ω Õ › Ì ˝
xE so rs . > N ^ n ~ é û Æ æ Œ fi Ó ˛
xF si us / ? O _ o del è ü Ø ø œ fl Ô ˇ

CONTROL
CODES

ROMAN CHARACTERS SCRIPT-SPECIFIC CHARACTERS

LOW ASCII RANGE HIGH ASCII RANGE

FIG 1 - THE STANDARD ROMAN CHARACTER SET
Glyphs

The visual representation of a character on a display device is called a glyph. In other words, a glyph is
the shape by which a character is represented. A specific character can be represented by many different
shapes (that is, glyphs).
Two types of glyphs are used by the Font Manager: bitmapped glyphs and glyphs from outline fonts. A
bitmapped glyph is a bitmap designed at a fixed size for a particular display device. An "outline" is a
mathematical description of the glyph in terms of lines and curves, and is used by the Font Manager to
create bitmaps at any size for any display device.

21-2 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

Typefaces
If all glyphs for a character set share certain design characteristics, they form a typeface. Typefaces have
their own names, such as Arial, Geneva, or Times.

Styles
A specific variation in a glyphs appearance is called a style. On the Macintosh, available styles include
plain, bold, italic, underline, outline, shadow, condensed, and extended. QuickDraw can add styles to
bitmaps, or fonts can be designed a specific style, such as, for example, Arial Italic.

Fonts and Font Families
A font is a full set of glyphs in a specific typeface and style. All fonts have a font name, such as "Arial" or
"Geneva", which is ordinarily the same name as the typeface from which it was derived. Except for fonts
not in the plain style, the font's name includes the style (or styles), for example "Palatino Bold Italic".
Fonts on the Macintosh are resources. The resource types are as follows:

 Bitmapped font resources are of type 'FONT' (the original resource type for fonts) and 'NFNT'
(bitmapped font). 'FONT' and 'NFNT' resources provide a separate bitmap for each glyph in each style
and size.

 Outline font resources are of type 'sfnt'. 'sfnt' resources comprise glyphs in a particular typeface
and style.

If multiple fonts of the same typeface are present, the Font Manager groups those fonts into font families
of resource type 'FOND'. A font family ID is the resource ID for a font family.
As an aside, most (though not all) fonts assign glyphs to character codes 0x20 to 0x7F which visually define
the characters associated with those codes.2 However, there are differences in the glyphs assigned to the
high-ASCII range. Indeed, some fonts do not actually include glyphs for all, or part, of the high-ASCII
range.

Font Measurements
Fonts are either monospaced or proportional. All glyphs in a monospaced font are the same width. The
glyphs in a proportional font have different widths, "m" being wider than "i", for example.

Base Line, Ascent Line and Descent Line
Most glyphs in a font sit on an imaginary line called the base line. The ascent line approximately
corresponds with the tops of the uppercase letters of the font. The descent line usually corresponds to the
bottom of descenders (the tails of glyphs like "j"). See Fig 2.

FIG 2 - FONT MEASUREMENT TERMS

ASCENT LINE

DESCENT LINE

BASE LINE

ADVANCE WIDTH

GLYPH ORIGIN

LEFT SIDE
BEARING

2 Fonts such as Zapf Dingbats assign glyphs of pictorial symbols to this range. as well as the low-ASCII range.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-3

Glyph Origin, Left Side Bearing, and Advance Width
The glyph origin is where QuickDraw begins drawing the glyph. The left side bearing is the white space
between the glyph origin and the beginning of the glyph. The advance width is the full width of a glyph,
measured from its origin to the origin of the next glyph. See Fig 2.

Font Size
Font size is the measurement, in points, from the base line of one line of text to the base line of the next
line (assuming single-spaced text). A point is equivalent to 1/72 of an inch. The size of a font is often, but
not always, the sum of the ascent, descent and leading (pronounced "ledding") values for a font. (The
leading is the vertical space between the descent line of one line of single-spaced text and the ascent line of
the next line.)

The Font Manager and QuickDraw
The Font Manager keeps track of all fonts available to an application and supports QuickDraw by
providing the character bitmaps that QuickDraw needs. If QuickDraw requests a typeface that is not
represented in the available fonts, the Font Manager substitutes one that is. Where necessary, QuickDraw
scales the font to the requested size and applies the specified style.

Aspects of Text Editing — Caret Position, Text Offsets,
Selection Range, Insertion Point, and Highlighting
Caret Position and Text Offset

In the world of text editing, the caret is defined as the blinking vertical bar that indicates the insertion
point in text, and a caret position is a location on the screen that corresponds to an insertion point in
memory. A caret position is always between glyphs on the screen. The caret is always positioned on the
leading edge of the glyph corresponding to the character at the insertion point in memory. When a new
character is inserted, the character at the insertion point, and all subsequent characters, are shifted forward
one character position in memory.
The relationship between caret position, insertion point and offset is illustrated at Fig 3.

FIG 3 - CARET POSITION AND INSERTION POINT

2
0x4D0x41 0x430x49 0x4E

TRAILING EDGE OF C LEADING EDGE OF I

CARET POSITION

BYTE OFFSETS

CHARACTER CODES

CHARACTERS

0 1 3 4

M A C I N

INSERTION POINT
(OFFSET = 3)

Converting Screen Position to Text
Offset

A mouse-down event can occur anywhere in a glyph; however, the caret position derived from that mouse-
down must be an infinitely thin line between two glyphs.
As shown at Fig 4, a line of glyphs is divided into mouse-down regions, which, except at the end of the
line, extend from the centre of one glyph to the centre of the next glyph. A click anywhere in a particular
mouse-down region yields the same caret position.

21-4 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

FIG 4 - INTERPRETING CARET POSITION FROM A MOUSE-DOWN EVENT

MOUSE-DOWN REGION

CARET POSITION

Selection Range and Insertion Points
The selection range is the sequence of zero or more contiguous characters where the next text editing
operation is to occur. If a selection range contains zero characters, it is called an insertion point.

Highlighting
A selection range is typically marked by highlighting, that is, by drawing the glyphs with a coloured
background. The limits of highlighting rectangles are measured in terms of caret position. For example, if
the characters A, C, and I at Fig 3 were highlighted, the highlighting would extend from the leading edge
of A (offset = 1) to the leading edge of N (offset = 4).

Outline Highlighting
Outline highlighting is the "framing" of text in the selection range in an inactive window. If there is no
selection range, a gray, unblinking caret is displayed.

Keyboards and Text
Each keypress on a particular keyboard generates a value called a raw key code. The keyboard driver
which handles the keypress uses the key-map ('KMAP') resource to map the raw key code to a keyboard-
independent virtual key code. It then uses the Event Manager and the keyboard layout ('KCHR') resource
to convert a virtual keycode into a character code. The character code is passed to your application in the
event structure generated by the keypress.

Introduction to TextEdit
TextEdit is a collection of functions and data structures which you can use for the purposes of basic text
formatting and editing. It was originally designed to handle edit text items in dialogs, and was
subsequently enhanced to provide some of the more complex capabilities required of a basic text editor.
That said, it should be understood that TextEdit was never intended to support all of the basic features
generally required of a text editor (for example, tabs) and was never intended to manipulate lengthy text
documents in excess of 32 KB. Indeed, the limit for documents created by TextEdit is 32,767 characters.
If you do not need to create large files and only need basic formatting capabilities, TextEdit provides a
useful alternative to writing your own specialised text processing functions.

Editing Tasks Performed by TextEdit
The fundamental editing tasks which TextEdit can perform for your application are as follows:

 Selecting text by clicking and dragging the mouse, selecting words by double-clicking, and
extending or shortening selections by Shift-clicking.

 Displaying the caret at the insertion point or highlighting the current text selection, as appropriate.

 Handling line breaking, that is, preventing a word from being split between lines.

 Cutting, copying, and pasting text within your application, and between your application and other
applications.

 Managing the use of more than one font, text size, text colour, and text style from character to
character.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-5

TextEdit Options
You can use TextEdit at different levels of complexity.

Using TextEdit Indirectly
For the simplest level of text handling (that is, in dialogs), you need not even call TextEdit directly but
rather use the Dialog Manager. The Dialog Manager, in turn, calls TextEdit to edit and display text.

Displaying Static Text
If you simply want to display one or more lines of static (non-editable) text, you can call TETextBox, which
draws your text in the location you specify. TETextBox may be used to display text that you cannot edit.
You do not need to create an TextEdit structure (see below) because TETextBox creates its own TextEdit
structure. TETextBox draws the text in a rectangle whose size you specify in the coordinates of the current
graphics port. Using the following constants, you can specify how text is aligned in the box:

Constant Description
teFlushDefault Default alignment according to primary line direction of the script system. (Left for Roman script

system.)
teCenter Centre alignment.
teFlushRight Right alignment.
teFlushLeft Left alignment.

Text Handling — Monostyled Text
If your application requires very basic text handling in a single typeface, style, and size, you probably only
need monostyled TextEdit. You can use monostyled TextEdit with any single available font.

Text Handling — Multistyled Text
If your application requires a somewhat higher level of text handling (allowing the user to change typeface,
style, and size within the document, for example), you can use multistyled TextEdit. However, as
previously stated, mutistyled TextEdit has now been overshadowed by the introduction of the Multilingual
Text Engine.

Caret Position and Movement in TextEdit
TextEdit always positions the caret where the next editing operation will occur. When TextEdit pastes
text, it positions the caret after the newly pasted text. Assuming that the caret is not in the first or last line
of text,TextEdit moves the caret up or down one line when the user presses the Up Arrow key or the Down
Arrow key. (If the caret is on the first line, TextEdit moves the caret to the beginning of text on that line if
the user presses the Up Arrow key,. If the caret is on the last line, TextEdit moves the caret to the end of
the text on that line if the user presses the Down Arrow key.)3

Automatic Scrolling
One way for the user is to select large blocks of text is to click in the text and, holding the mouse button
down, drag the cursor above, below, left of, or right of TextEdit's view rectangle (see below). While the
mouse button remains down, and provided that your application has enabled automatic scrolling, TextEdit
continually calls its click loop function to automatically scroll the text.
Although TextEdit's default click loop function automatically scrolls the text, it cannot adjust the scroll
box/scroller position in an application's scroll bars to follow up the scrolling. The default click loop
function can, however, be replaced with an application-defined click loop (callback) function which
accommodates scroll bars.

3 TextEdit does not support the use of modifier keys, such as the Shift key, in conjunction with the arrow keys.

21-6 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

TextEdit's Private, Null, and Style Scraps
Internally, TextEdit uses three scrap areas, namely, the private scrap, the null scrap, and the style scrap.
The null scrap and the style scrap apply only to multistyled TextEdit.
The private scrap, which belongs to your application, is used for all cut, copy, and paste activity.
The null scrap is used by TextEdit to store character attribute information4 associated with a null
selection or text that is deleted by backspacing. (A null selection is an insertion point.)
When multistyled text is cut or copied, TextEdit copies character attribute information to the style scrap.

Text Alignment
Text alignment can be left-aligned, right-aligned, centred, or justified. Justified means aligned with both
the left and right edges of TextEdit's destination rectangle (see below), and is achieved by spreading or
compressing text to fit a given line width.

Primary TextEdit Data Structures
The primary data structures used by TextEdit are the TextEdit structure and the dispatch structure.
Additional data structures are associated with multistyled TextEdit. This section describes the primary data
structures only.

The TextEdit Structure
The TextEdit structure is the principal data structure used by TextEdit. This structure is the same
regardless of whether the text is monostyled or multistyled, although some fields are used differently for
multistyled TextEdit structures. The TextEdit structure is as follows:

struct TERec
{
 Rect destRect; // Destination rectangle.
 Rect viewRect; // View rectangle.
 Rect selRect; // Selection rectangle.
 short lineHeight; // Vert spacing of lines. -1 in multistyled.
 short fontAscent; // Font ascent. -1 in multistyled TextEdit structure.
 Point selPoint; // Point selected with the mouse.
 short selStart; // Start of selection range.
 short selEnd; // End of selection range.
 short active; // Set when structure is activated or deactivated.
 WordBreakUPP wordBreak; // Word break function.
 TEClickLoopUPP clickLoop; // Click loop function.
 long clickTime; // (Used internally.)
 short clickLoc; // (Used internally.)
 long caretTime; // (Used internally.)
 short caretState; // (Used internally.)
 short just; // Text alignment.
 short teLength; // Length of text.
 Handle hText; // Handle to text to be edited.
 long hDispatchRec; // Handle to TextEdit dispatch structure.
 short clikStuff; // (Used internally)
 short crOnly; // If < 0, new line at Return only.
 short txFont; // Text font. // If multistyled edit struct (txSize = -1),
 StyleField txFace; // Chara style. // these bytes are used as a handle
 SInt8 filler; // // to a style structure (TEStyleHandle).
 short txMode; // Pen mode.
 short txSize; // Font size. -1 in multistyled TextEdit structure.
 GrafPtr inPort; // Pointer to grafPort for this TextEdit structure.
 HighHookUPP highHook; // Used for text highlighting, caret appearance.
 CaretHookUPP caretHook; // Used from assembly language.
 short nLines; // Number of lines.
 short lineStarts[16001]; // Positions of line starts.
};
typedef struct TERec TERec;
typedef TERec *TEPtr;
typedef TEPtr *TEHandle;

4 The font, style, size, and colour aspects of text are collectively referred to as character attributes.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-7

Field Descriptions
destRect The destination rectangle (local coordinates), which is the area in which text is drawn (see

Fig 5). The top of this rectangle determines the position of the first line of text and the two
sides determine the beginning and the end of each line. The bottom of the rectangle varies
as text is added or removed as a result of editing operations.
The destination rectangle is central to the matter of scrolling text. When text is scrolled
downwards, for example, you can think of the destination rectangle as being moved
upwards through the view rectangle.

viewRect The view rectangle (local coordinates), which is the area in which text is actually displayed
(see Fig 5).

Windjammer. The word rang like
an insult. And that was the
intention of hooting steamship
crews, who used it to describe the
huge square-rigged sailing vessels
that were valiantly challenging the
coming of steam on world trade
routes.

Windjammer. The word rang like an insult.
And that was the intention of hooting
steamship crews, who used it to describe the
huge square-rigged sailing vessels that were
valiantly challenging the coming of steam
on world trade routes.

DESTINATION RECTANGLE VIEW RECTANGLE

FIG 5 - DESTINATION AND VIEW RECTANGLES

selRect The selection rectangle boundaries (local coordinates).
lineHeight In a monostyled TextEdit structure, the vertical spacing of lines of text, that is, the distance

from the ascent line of any one line of text to the ascent line of the next line of text.
Multistyled TextEdit Structure. In a multistyled TextEdit structure, this field
is set to -1, which indicates that line heights are calculated for each individual line of text.

fontAscent In a monostyled TextEdit structure, the font ascent, that is, the vertical distance above the
baseline the pen is positioned to begin drawing the caret or selection highlighting. (In the
case of single-spaced text, the font ascent is the height of the text in pixels.)
Multistyled TextEdit Structure. In a multistyled TextEdit structure, this field
is set to -1, which indicates that font ascent is calculated for each individual line of text.

selPoint The point selected with the mouse (local coordinates).
selStart The byte offset of the start of the selection range. TextEdit initialises this field to 0 when

you create an TextEdit structure.
selEnd The byte offset of the end of the selection range. TextEdit initialises this field to 0 when

you create an TextEdit structure. With both selStart and selEnd initialised to 0, the insertion
point is placed at the beginning of the text.

active Set when the TextEdit structure is activated and reset when the TextEdit structure is
rendered inactive.

wordBreak Universal procedure pointer to the word selection break function, which determines,
firstly, the word that is highlighted when the user double-clicks in the text and, secondly,
the position at which text is wrapped at the end of the line.

clickLoop Universal procedure pointer to the click loop function, which is called repeatedly while the
mouse button is held down within the text.

just Text alignment (default, left, centre, or right).
teLength The number of bytes in the text. The maximum allowable length is 32,767 bytes. When

you create a TextEdit structure, TextEdit initialises this field to 0.
hText A handle to the text. When you create a TextEdit structure, TextEdit initialises this field to

point to a zero-length block in the application heap.
hDispatchRec The handle to the TextEdit dispatch structure (see below). For internal use only.

21-8 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

clikStuff TextEdit sets this field according to whether the most recent mouse-down event occurred
on a glyph's leading or trailing edge. Used internally by TextEdit to determine a caret
position.

crOnly If the value in this field is positive, text wraps at the right edge of the destination rectangle.
If the value is negative, text does not wrap.

txFont In a monostyled TextEdit structure, the font of all the text in the TextEdit structure. (If
you change the value, you should also change the lineHeight and fontAscent fields as
appropriate.)
Multistyled TextEdit Structure. In a multistyled TextEdit structure, if the
txSize field (see below) is set to -1, this field combines with txFace and filler to hold a handle
to the associated style structure.

txFace In a monostyled TextEdit structure, the character attributes of all the text in a TextEdit
structure. (If you change this value, you should also change the lineHeight and fontAscent
fields as appropriate.)
Multistyled TextEdit Structure. In a multistyled TextEdit structure, if the
txSize field (see below) is set to -1, this field combines with txFont and filler to hold a handle
to the associated style structure.

txMode The pen mode of all the text.
txSize In a monostyled TextEdit structure, this field is set to the size of the text in points.

Multistyled TextEdit Structure. In a multistyled TextEdit structure, this field
is set to is -1, indicating that the TextEdit structure contains associated character attribute
information. The txFont, txFace, and filler fields combine to form a handle to the style
structure in which this character attribute information is stored.

inPort A pointer to the graphics port associated with the TextEdit structure.
highHook A universal procedure pointer to the function that deals with text highlighting.
caretHook Universal procedure pointer to the function that controls the appearance of the caret.
numLines The number of lines of text.
lineStarts A dynamic array which contains the character position of the first character in each line of

the text. This array grows and shrinks, containing only as many elements as needed.

The Dispatch Structure
The hDispatchRec field of the TextEdit structure stores a handle to the dispatch structure. The dispatch
structure is an internal data structure whose fields contain the addresses of functions which determine the
way TextEdit behaves. You can modify TextEdit's default behaviour by replacing the address of a default
function in the dispatch structure with the address of your own customized function.

Monostyled TextEdit
This section describes the use of TextEdit with monostyled text, that is, text with a single typeface, style,
and size. Everything in this section also applies to using TextEdit with multistyled text except where
otherwise indicated.

Creating, and Disposing of, a Monostyled TextEdit Structure
Creating a Monostyled TextEdit
Structure

To use TextEdit functions, you must first create a TextEdit structure using TENew. TENew returns a handle
to the newly-created monostyled TextEdit structure. You typically store the returned handle in a field of a
document structure, the handle to which is typically stored in the application window's refCon field.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-9

The required destination and view rectangles are specified in the TENew call. You should inset the
destination rectangle at least four pixels from the left and right edges of the graphics port, making an
additional allowance for scroll bars as appropriate. This will ensure that the first and last glyphs in each
line are fully visible. You typically make the view rectangle equal to the destination rectangle. (If you do
not want the text to be visible, specify a view rectangle off the screen.)
When a TextEdit structure is created, TextEdit initialises the TextEdit structure's fields based on values in
the current graphics port object and on the type of TextEdit structure you create.

Disposing of an TextEdit Structure
Memory allocated for a TextEdit structure may be released by calling TEDispose.

Setting the Text
A new TextEdit structure does not contain any text until the user either opens an existing document or
enters text via the keyboard. The following is concerned with existing documents.
TESetText may be used to specify the text to be edited. Alternatively, you can set the hText field of the
TextEdit structure directly.

Calling TESetText
When a user opens a document, your application can load that document's text and then call TESetText.
TESetText creates a copy of the text and stores the copy in the existing handle of the TextEdit structure's
hText field.
You must pass the length of the text in the call to TESetText. TESetText uses this to reset the teLength field of
the TextEdit structure, and to set the selStart and selEnd fields to the last byte offset of the text. TESetText
also calculates the line breaks.
TESetText does not cause the text to be displayed immediately. You must call InvalWindowRect to force the
text to be displayed at the next update event for the active window.

Changing the hText Field
The alternative of setting the hText field directly, replacing the existing handle with the handle of the new
text, saves memory if you have a lot of text. When you use this method, you must also assign the length of
the text to the teLength field of the TextEdit structure and call TECalText to recalculate the lineStarts array and
numLines values.

Responding to Events
Activate Events

When your application receives an activate event (Classic event model) or kEventWindowActivated or
kEventWindowDeactivated event type (Carbon event model), it should call TEActivate or TEDeactivate as
appropriate.
A TextEdit structure which has been activated by TEActivate has its selection highlighted or, if there is no
selection, has its caret displayed and blinking at the insertion point. A TextEdit structure which has been
deactivated by TEDeactivate has its selection range outlined (if outline highlighting is enabled5) or, if there is
no selection, has a grey, unblinking caret displayed at the insertion point.
Note that, when you use TEClick and TESetSelect (see below) to set the selection range or insertion point, the
selection range is not highlighted, or the blinking caret is not displayed, until the TextEdit structure is
activated. (However, if outline highlighting is enabled, the text of the selection range will be framed or a
gray, unblinking caret will be displayed.)

5 Outline highlighting may be activated and deactivated using TEFeatureFlag.

21-10 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

Update Events — Calling TEUpdate
When your application receives an update event (Classic event model) or kEventWindowDrawContent or
kEventWindowUpdate event type (Carbon event model), it should call TEUpdate. In addition, you should call
TEUpdate after changing any fields of the TextEdit structure, or after any editing or scrolling operation,
which alters the onscreen appearance of the text.

Mouse-Down Events — Calling TEClick
On receipt of a mouse-down event that should be handled by TextEdit, your application must pass the
event to TEClick. TEClick tells TextEdit that a mouse-down event has occurred. Before calling TEClick,
however, your application must:

 Convert the mouse location from global coordinates to the local coordinates required by TEClick.

 Determine if the Shift key was down at the time of the event.

TEClick repeatedly calls the click loop function (see below) as long as the mouse button is held down and
retains control until the button is released. The behaviour of TEClick depends on whether the Shift key was
down at the time of the mouse-down event and on other user actions as follows:

User's
Action

Behaviour of TEClick

Shift key down. Extend the current selection range.
Shift key not down. Remove highlighting from current selection range. Position the insertion point as close as possible to

the location of the mouse click.
Mouse dragged. Expand or shorten the selection range a character at a time. Keep control until the user releases the

mouse button.
Double-click. Extend the selection to include the entire word where the cursor is positioned.

Key-Down Events - Accepting Text
Input

On receipt of a key-down event that should be handled by TextEdit, your application must call TEKey to
accept the keyboard input. TEKey replaces the current selection range with the character passed to it and
moves the insertion point just past the inserted character.
Depending on the requirements of your application, you may need to filter out certain character codes (for
example, that for a Tab key press) so that they are not passed to TEKey. You should also check that the
TextEdit limit of 32,767 bytes will not be exceeded by the insertion of the character before calling TEKey
and you should call your scroll bar adjustment function immediately after the insertion.

Caret Blinking
To force the insertion point caret to blink, your application must call TEIdle at an interval equal to the value
stored in the low-memory global CaretTime. You can retrieve this value by calling GetCaretTime. In Classic
event model applications, you should set the sleep parameter in the WaitNextEvent call to this value and call
TEIdle when WaitNextEvent returns 0 with a null event. In Carbon event model applications, you should
install a timer set to fire at this interval and call TEIdle when the timer fires.
If there is more than one TextEdit structure associated with an active window, you must ensure that you
pass TEIdle the handle to the currently active TextEdit structure. You should also check that the handle to
be passed to TEIdle does not contain NULL before calling the function.

Cutting, Copying, Pasting, Inserting, and Deleting Text
Cutting, Copying, and Pasting

You can use TextEdit to cut, copy, and paste text within and between TextEdit structures, and across
applications. The relevant functions, and their effect in the case of a monostyled TextEdit structure, are as
follows:

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-11

Function Use To Comments
TECut Cut text. Copies the text to the TextEdit private scrap.
TECopy Copy text. Copies the text to the TextEdit private scrap.
TEPaste Paste text. Pastes from the TextEdit private scrap to the TextEdit

structure.
TEToScrap Copy TextEdit private scrap to the

Carbon Scrap Manager's scrap.
Copying via the Carbon Scrap Manager's scrap is required if
monostyled text is to be carried across applications.

TEFromScrap Copy the Carbon Scrap Manager's
scrap to TextEdit private scrap.

Copying via the Carbon Scrap Manager's scrap is required if
text is to be carried across applications.

TEGetScrapLength Determine the length of the text to
be pasted.

Returns the size, in bytes, of the text in the private scrap.

You will need to call your vertical scroll bar adjustment function immediately after cut and paste
operations. In addition, you will need to ensure that a paste will not cause the TextEdit limit of 32,767
bytes to be exceeded.

Inserting and Deleting Text
The following TextEdit functions are used to insert and delete monostyled text:

Functio
n

Use To Comments

TEInsert Insert text into the TextEdit structure
immediately before the selection range
or insertion point.

Does not affect the selection range.
Redraws the text if necessary.

TEDelete Remove the selected range of text from
the TextEdit structure.

Does not transfer the text to either TextEdit's private scrap or the
Carbon Scrap Manager's scrap.
Useful for implementing a Clear command.
Redraws the remaining text if necessary.

You will need to call your vertical scroll bar adjustment function immediately after insertions and
deletions. In addition, you will need to ensure that an insertion will not cause the TextEdit limit of 32,767
bytes to be exceeded.

Setting the Selection Range or Insertion Point
Using the TESetSelect function, your application can set the selection range or set the location of the
insertion point. (For example, your application might use TESetSelect to locate the caret at the start of a data
entry field where you want the user to enter a value.) TESetSelect changes the value in the selStart and selEnd
fields of the TextEdit structure.
To set a selection range, you pass the byte offsets of the starting and ending characters in the selStart and
selEnd parameters. To set the location of the insertion point, you pass the same values in the selStart and
selEnd parameters. You can set the selection range (or insertion point) to any character position
corresponding to byte offsets 0 to 32767.
To implement a Select All menu command, pass 0 in the selStart parameter and the value in the teLength field
of the TextEdit structure in the selEnd parameter.

Enabling, Disabling, and Customising Automatic Scrolling
Enabling and Disabling

You can use the TEAutoView function to enable automatic scrolling (which, by default, is disabled).
TEAutoView may also be used to disable automatic scrolling.

21-12 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

Customising
As previously stated, the default click loop (callback) function does not adjust the scroll bars as the text is
scrolled, a situation that can be overcome by replacing the default click loop function with an application-
defined click loop (callback) function which updates the scroll bars as it scrolls the text.
The clickLoop field of the TextEdit structure contains a universal procedure pointer to a click loop (callback)
function, which is called continuously as long as the mouse button is held down. Installing your custom
function involves a call to TESetClickLoop to assign the universal procedure pointer to the TextEdit structure's
clickLoop field.

Scrolling Text
When a mouse-down event occurs in a scroll bar, your application must determine how far to scroll the
text. The basic value for vertical scrolling of monostyled text is typically the value in the lineHeight field of
the TextEdit structure, which can be used as the number of pixels to scroll for clicks in the Up and Down
scroll arrows. For clicks in the gray areas/track, this value is typically multiplied by the number of text
lines in the view rectangle minus 1. Scrolling by dragging the scroll box/scroller involves determining the
number of text lines to scroll based on the current position of the top of the destination rectangle and the
control value on mouse button release.
You pass the number of pixels to scroll in a call to TEScroll or TEPinScroll. (The difference between these two
functions is that the latter stops scrolling when the last line is scrolled into the view rectangle.) The
destination rectangle is offset by the amount you scroll.

Forcing the Selection Range Into the
View

Your application can call TESelView to force the selection range to be displayed in the view rectangle. When
automatic scrolling is enabled, TESelView scrolls the selection range into view, if necessary.

Setting Text Alignment
You can change the alignment of the entire text of a TextEdit structure by calling TESetAlignment. The
following constants apply:

Constant Description
teFlushDefault Default alignment according to primary line direction of the script system. (Left for Roman script

system.)
teCenter Centre alignment.
teFlushRight Right alignment.
teFlushLeft Left alignment.

You should call the Window manager's InvalWindowRect function after you change the alignment so that the
text is redrawn in the new alignment.

Saving and Opening TextEdit Documents
The demonstration program at Chapter 18 demonstrates opening and saving monostyled TextEdit
documents.

Multistyled TextEdit
With the introduction, with Mac OS 9, of the Multilingual Text Editor (see Chapter 26), it
became all but inconceivable that programmers would ever again use multistyled TextEdit
to provide their applications with multi-styled text editing capabilities. That said,
multistyled TextEdit may still be considered useful where the requirement is simply the
display of non-editable multi-styled text, as in the Help dialog component of the
demonstration program associated with this chapter.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-13

This section addresses additional factors and considerations applying to multistyled TextEdit, but only to
the extent necessary to support an understanding of those factors involved in the display of non-editable
styled text, as in the Help dialog component of the demonstration program associated with this chapter.

Text With Multiple Styles — Style Runs, Text Segments, Font
Runs, Character Attributes

Text that uses a variety of fonts, styles, sizes, and colours is referred to as multistyled text.
TextEdit organises multistyled text into style runs, which comprise a sets of contiguous characters which
all share the same font, size, style, and colour characteristics. TextEdit tracks style runs in the data
structures allocated for a multistyled TextEdit structure and uses this information to correctly display
multistyled text.
The part of a style run that exists on a single line is called a text segment. A larger division than a style
run is the font run, which comprises those characters which share the same font. The font, style, size, and
colour aspects of text are collectively referred to as character attributes.

Additional TextEdit Data Structures for Multistyled Text
The TextEdit structure and the dispatch structure are the only data structures associated with monostyled
text. However, when you allocate a multistyled TextEdit structure, a number of additional subsidiary data
structures are created to support the text styling capabilities. The first of these additional data structures is
the style structure, which stores the character attribute information for the text. (Recall that, when a
multistyled TextEdit structure is created, the bytes at the txFont, txFace, and filler fields of the TextEdit
structure contain a handle to the style structure.)
The additional data structures associated with a multistyled TextEdit structure are shown at Fig 6.

Creating a Multistyled TextEdit Structure
The multistyled TextEdit structure is created by calling TEStyleNew.

Inserting Text
The following describes TEStyleInsert, which is used to insert multistyled text:

Function Use To Comments
TEStyleInsert Insert multistyled text

into the TextEdit
structure immediately
before the selection
range or insertion point.

Does not affect the selection range.
Redraws the text if necessary.
Applies the specified character attributes to the text. (You should create
your own style scrap structure, specifying the style attributes to be inserted
and applied to the text. These attributes are copied directly into the style
structure's style table.)

21-14 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

FIG 6 - THE STYLE STRUCTURE AND SUBSIDIARY DATA STRUCTURES

struct TEStyleRec
{
 short nRuns; // No of elements in style run table.
 short nStyles; // No of elements in style table.
 STHandle styleTab; // Handle to style table.
 LHHandle lhTab; // Handle to line-height table.
 long teRefCon; // Available for application use.
 NullStHandle nullStyle; // Handle to null style record.
 StyleRun runs[8001]; // Offsets and style table indices.
};
typedef struct TEStyleRec TEStyleRec;

STYLE STRUCTURE

struct ScrpSTElement
{
 long scrpStartChar; // Offset in data.
 short scrpHeight; // Line height this style.
 short scrpAscent; // Ascent above baseline this font.
 short scrpFont; // Font family number.
 StyleField scrpFace; // Font style
 short scrpSize; // Font size (points).
 RGBColor scrpColor; // Colour used in this style.
};
typedef struct ScrpSTElement ScrpSTElement;

SCRAP STYLE TABLE ELEMENT

struct NullStRec
{
 long teReserved;// Reserved.
 StScrpHandle nullScrap;// Handle to scrap style table.
};
typedef struct NullStRec NullStRec;

NULL STYLE STRUCTURE

struct StScrpRec
{
 short scrpNStyles; // No of styles in scrap.
 ScrpSTTable scrpStyleTab; // Table of styles for scrap.
};
typedef struct StScrpRec StScrpRec;

struct STElement
{
 short stCount; // Number of runs in this style.
 short stHeight; // Line height this style (points).
 short stAscent; // Ascent above baseline this font.
 short stFont; // Font (family) number.
 StyleField stFace; // Character style.
 short stSize; // Font size (points).
 RGBColor stColor; // Colour used in this style.
};
typedef struct STElement STElement;

STYLE TABLE ELEMENT

struct StyleRun
{
 short startChar; // Starting character position.
 short styleIndex; // Index into style table.
};
typedef struct StyleRun StyleRun;

STYLE RUN TABLE ELEMENT

struct LHElement
{
 short lhHeight; // Maximum height in line.
 short lhAscent;// Maximum ascent in line.
};
typedef struct LHElement LHElement;

STYLE SCRAP STRUCTURE

LINE-HEIGHT TABLE ELEMENT

The style table contains
one entry for each distinct
set of character attributes.

The line-height table
contains one entry for
each line of text.

The style run table
contains an entry for
each style run.

The scrap style table contains
one entry for each style run in the
style scrap structure. It contains
information similar to that
contained in the style table.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-15

Formatting and Displaying Dates, Times, and Numbers

Preamble — The Text Utilities and International Resources
The Text Utilities

The Text Utilities are a collection of text-handling functions which you can use to, amongst other things,
format numbers, currency, dates, and times.

International Resources
Many Text Utilities functions utilise the international resources, which define how different text elements
are represented depending on the script system in use. The international resources relevant to formatting
numbers, currency, dates, and times are as follows:

 Numeric Format Resource. The numeric format ('itl0') resource contains short date and
time formats, and formats for currency and numbers. It provides separators for decimals, thousands,
and lists. It also contains the region code for this particular resource. Three of the several variations
in short date and time formats are as follows:

System
Software

Morning Afternoo
n

Short Date

United States 1:02 AM 1:02 PM 2/1/90
Sweden 01:02 13:02 90-01-01
Germany 1:02 Uhr 13:02 Uhr 2.1.1990

 Long Date Format Resource. The long date format ('itl1') resource specifies the long
and abbreviated date formats for a particular region, including the names of days and months and the
exact order of presentation of the elements. It also contains a region code for this particular resource.
Three of the several variations of the long and abbreviated date formats are as follows:

System
Software

Abbreviated
Date

Long Date

United States Tue, Jan 2, 1990 Tuesday, January 2 1990
French Mar 2 Jan 1990 Mardi 2 Janvier 1990
Australian Tue, 2 Jan 1990 Tuesday, 2 January 1990

 Tokens Resource. The tokens ('itl4') resource contains, amongst other things, a table for
formatting numbers. This table, which is called the number parts table, contains standard
representations for the components of numbers and numeric strings. As will be seen, certain Text
Utilities number formatting functions use the number parts table to create number strings in localised
formats.

Date and Time
The Text Utilities functions which work with dates and times use information in the international resources
to create different representations of date and time values. The Operating System provides functions that
return the current date and time in numeric format. Text Utilities functions can then be used to convert
these values into strings which can, in turn, be presented in the different international formats.

Date and Time Value Representations
The Operating System provides the following differing representations of date and time values:

Representation Description
Standard date-time value. A 32-bit integer representing the number of seconds between midnight, 1 January 1904 and the

current time.
Long date-time value. A 64-bit signed representation of data type LongDateTime.

21-16 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

Allows for coverage of a longer time span than the standard date-time value, specifically, about
30,000 years.

Date-time structure. Data type DateTimeRec. Includes integer fields for year, month, day, hour, minute, second, and
day of week.

Long date-time structure. Data type LongDateRec. Similar to the date-time structure, except that it adds several additional
fields, including integer values for the era, day of the year, and week of the year. Allows for a
longer time span than the date-time structure.

The date-time (DateTimeRec) and the long date-time (LongDateRec) structures are as follows:

 union LongDateRec
 {
 struct
struct DateTimeRec {
{ short era;
 short year; short year;
 short month; short month;
 short day; short day;
 short hour; short hour;
 short minute; short minute;
 short second; short second;
 short dayOfWeek; short dayOfWeek;
}; short dayOfYear;
 short weekOfYear;
typedef struct DateTimeRec DateTimeRec; short pm;
 short res1;
 short res2;
 short res3;
 } ld;
 short list[14];
 struct
 {
 short eraAlt;
 DateTimeRec oldDate;
 } od;
 };

 typedef union LongDateRec LongDateRec;

Obtaining Date-Time Values and
Structures

The Operating System Utilities provide the following two functions for obtaining date-time values and
structures.

Function Description
GetDateTime Returns a standard date-time value.
GetTime Returns a date-time structure.

Converting Between Values and
Structures

The Operating System provides the following four functions for converting between the different date and
time data types:

Function Converts To
DateToSeconds Date-time structure. Standard date-time value.
SecondsToDate Standard date-time value. Date-time structure.
LongDateToSeconds Long date-time structure. Long date-time value.
LongSecondsToDate Long date-time value. Long date-time structure.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-17

Converting Date-Time Values Into
Strings

The Text Utilities provide the following functions for converting from one of the numeric date-time
representations to a formatted string.

Function Description
DateString Converts standard date-time value to a date string formatted according to the specified international

resource.
LongDateString Converts long date-time value to a date string formatted according to the specified international

resource.
TimeString Converts standard date-time value to a time string formatted according to the specified international

resource.
LongTimeString Converts long date-time values to a time string formatted according to the specified international

resource.

Output Format — Date. When you use DateString and LongDateString, you can specify, in the
longFlag parameter, an output format for the resulting date string. This format can be one of the following
three values of the DateForm enumerated data type:

Value Date String Produced
(Example)

Formatting Information Obtained From

shortDate 1/31/92 Numeric format resource ('itl0').
abbrevDate Fri, Jan 31, 1992 Long date format resource ('itl1').
longDate Friday, January 31, 1992 Long date format resource ('itl1').

Output Format — Time. When you use TimeString and LongTimeString, you can request an output
format for the resulting time string by specifying either true or false in the wantSeconds parameter. true will
cause seconds to be included in the string.
DateString, LongDateString, TimeString and LongTimeString use the date and time formatting information in the
format resource that you specify in the resource handle (intlHandle) parameter. If you specify NULL for the
value of the resource handle parameter, the appropriate format resource for the current script system is
used.

Converting Date-Time Strings Into
Internal Numeric Representation

The Text Utilities include functions which can parse date and time strings as entered by users and fill in the
fields of a structure with the components of the date and time, including the month, day, year, hours,
minutes, and seconds, extracted from the string.
Suppose your application needs to, say, convert a date and time string typed in by the user (for example,
"March 27, 1992, 08:14 p.m.") into numeric representation. The following Text Utilities functions may be
used to convert the string entered by the user into a long date-time structure:

Function Description
StringToDate Parses an input string for a date and creates an internal numeric representation of that date. Returns a

status value indicating the confidence level for the success of the conversion.
Expects a date specification, in one of the formats defined by the current script system, at the beginning
of the string. Recognizes date strings in many formats, for example: "September 1,1987", "1 Sept 87",
"1/9/87", and "1 1987 Sept".

StringToTime Parses an input string for a time and creates an internal numeric representation of that time. Returns a
status value indicating the confidence level for the success of the conversion.
Expects a time specification, in a format defined by the current script system, at the beginning of the
string.

You usually call StringToDate and StringToTime sequentially to parse the date and time values from an input
string and fill in the fields of a long date-time structure. Note that StringToDate assigns to its lengthUsed

21-18 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

parameter the number of bytes that it uses to parse the date. Use this value to compute the starting location
of the text that you can pass to StringToTime.
The "confidence level" value returned by both StringToDate and StringToTime is of type StringToDateStatus, a
set of bit values which have been OR'd together. The higher the resultant number, the lower the confidence
level. Three of the twelve StringToDateStatus values, and their meanings, are as follows:

Value Meaning
fataldateTime Fatal error during the parse.
dateTimeNotFound Valid date or time value not be found in string.
sepNotIntlSep Valid date or time value found, but one or more of the separator characters in the string was not an

expected separator character for the script system in use.

Date Cache Structure. Both StringToDate and StringToTime take a date cache structure as one of
their parameters. A date cache structure (a data structure of type DateCacheRec) stores date conversion data
used by the date and time conversion functions. You must declare a data cache structure in your
application and initialise it by calling InitDateCache once, typically in your main program initialisation code.

Numbers
The Text Utilities provide several functions for converting between the internal numeric representation of a
number and the output (or input) format of that number. You will need to perform these conversions when
the user enters numbers for your application to use or when you present numbers to the user.

Integers
The simplest number conversion tasks involve integer values. The following Text Utilities functions may
be used to convert an integer value to a numeric string and vice versa:

Function Description
NumToString Converts a long integer value into a string representation.
StringToNum Converts a string representation of a number into a long integer value.

The range of values accommodated by these functions is -2,147,483,647 to 2,147,483,648. No comma
insertion or other formatting is performed.

Number Format Specification Strings
Number format specification strings define the appearance of numeric strings. When you need to
accommodate the differences in number output formats for different countries and regions, or when you are
working with floating point numbers, you will need to use number format specification strings.
Parts. Each number format specification string contains up to three parts:

 The positive number format.

 The negative number format.

 The zero number format.

Each of these formats is applied to a numeric value of the corresponding type. When the specification
string contains only one part, that part is used for all values. When in contains two parts, the first part is
used for positive and zero values and the second part is used for negative values.
Elements. A number format specification string can contain the following elements:

 Number parts separators (, and .) for the decimal separator and the thousands separator.

 Literals to be included in the output. (Literals can be strings or brackets, braces and parentheses,
and must be enclosed in quotation marks.)

 Digit place holders. (Digit place holders that you want displayed must be indicated by digit
symbols. Zero digits (0) add leading zeroes whenever an input digit is not present. Skipping digits

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-19

(#) only produce output characters when an input digit is present. Padding digits (^) are like zero
digits except that a padding character such as a non-breaking space is used instead of leading zeros to
pad the output string.)

 Quoting mechanisms for handling literals correctly.

 Symbol and sign characters.

Examples. The following shows several different number format specification strings and the output
produced by each:

Number Format
Specification String

Numeric
Value

Output Format

###,###.##;-###,###.##;0 876543.21 876,543.21
###,###.0##,### 4321 4,321.0
###,###.0##,### 7.563489 7.563,489
###;(000);^^^ -1 (001)
###.### 5.234999 5.235
###'CR';###'DB';''zero'' 1 1CR
###'CR';###'DB';''zero'' 0 'zero'
##% 0.1 10%

Integer digits are always filled in from the right and decimal places are always filled in from the left. The
following examples, in which a literal is included in the middle of the format strings, demonstrate this
behaviour:

Number Format
Specification String

Numeric
Value

Output Format

###'ab'### 1 1
###'ab'### 123 123
###'ab'### 1234 1ab1234
0.###'ab'### 0.1 0.1
0.###'ab'### 0.123 1.123
0.###'ab'### 0.1234 0.123ab4

Overflow and Rounding. If the input string contains more digits than are specified in the number
format specification string, an error (formatOverflow) will be generated. If the input string contains more
decimal places than are specified in the number format specification string, the decimal portion is
automatically rounded.
Converting Number Format Specification Strings to Internal Numeric
Representations. With the required number format specification string defined, you must then
convert the string into an internal numeric representation. The internal representation of format strings is
stored in a NumFormatString structure. You use the following functions to convert a number format
specification string to a NumFormatString structure and vice versa.

Function Description
StringToFormatRec Converts a number format specification string into a NumFormatString structure.
FormatRecToString Convert a NumFormatString structure back to a number format specification string.

Number Parts Table. The internal numeric representation allows you to map the number into
different output formats. One of the parameters taken by StringToFormatRec is a number parts table. The
number parts table specifies which characters are used for certain purposes, such as separating parts of a
number6, in the format specification string.7 As previously stated, the number parts table is contained in
6 For example, a thousands separator is a comma in Australia and a decimal point in France.
7 The FormatRecToString function also contains a number parts table parameter. By using a different table than was used in
the call to StringToFormatRec, you can produce a number format specification string that specifies how numbers are formatted
for a different region of the world. You use FormatRecToString when you want to display the number format specification

21-20 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

the 'itl4' resource. A handle to the 'itl4' resource may be obtained by a call to GetIntlResourceTable, specifying
iuNumberPartsTable in the tableCode parameter.

Converting Between Floating Point
Numbers and Numeric Strings

Armed with a NumFormatString structure, you can convert floating point numbers into numeric strings and
numeric strings into floating point numbers using the following functions:

Function Description
StringToExtended Using a NumFormatString structure and a number parts table, converts a numeric string to an 80-bit

floating point value.
ExtendedToString Using a NumFormatString structure and a number parts table, converts an 80-bit floating point

number to a numeric string.

PowerPC Considerations. The PowerPC-based Macintosh follows the IEEE 754 standard for
floating point arithmetic. In this standard, float is 32 bits and double is 64 bits. (Apple has added the 128 bit
long double type.) However, the PowerPC floating point unit does not support Motorola's 80/96-bit extended
type, and neither do the PowerPC numerics. To accommodate this, you can use Apple-supplied conversion
utilities to move to and from extended. For example, the functions x80tod and dtox80 (see the header file
fp.h) can be used to directly transform 680x0 80-bit extended data types to double and back.
StringToFormatRec, FormatRecToString, StringToExtended, and ExtendedToString return a result of type FormatStatus,
which is an integer value. The low byte is of type FormatResultType. Typical examples of the returned
format status are as follows:

Value Meaning
fFormatOK The format of the input value is appropriate and the conversion was successful.
fBestGuess The format of the input value is questionable. The result of the conversion may or may not be

correct.
fBadPartsTable The parts table is not valid.

string to the user for perusal or modification.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-21

Main TextEdit Constants, Data Types and Functions

Constants
Alignment
teFlushDefault = 0
teCenter = 1
teFlushRight = -1
teFlushLeft = -2

Feature or Bit Definitions for TEFeatureFlag feature Parameter
teFAutoScroll = 0
teFTextBuffering = 1
teFOutlineHilite = 2
teFInlineInput = 3
teFUseWhiteBackground = 4
teFUseInlineInput = 5
teFInlineInputAutoScroll = 6

Data Types
typedef char Chars[32001];
typedef char *CharsPtr;
typedef CharsPtr *CharsHandle;

TextEdit Structure
struct TERec
{
 Rect destRect; // Destination rectangle.
 Rect viewRect; // View rectangle.
 Rect selRect; // Selection rectangle.
 short lineHeight; // Vert spacing of lines. -1 in multistyled edit struct.
 short fontAscent; // Font ascent. -1 in multistyled TextEdit structure.
 Point selPoint; // Point selected with the mouse.
 short selStart; // Start of selection range.
 short selEnd; // End of selection range.
 short active; // Set when structure is activated or deactivated.
 WordBreakUPP wordBreak; // Word break function.
 TEClickLoopUPP clickLoop; // Click loop function.
 long clickTime; // (Used internally.)
 short clickLoc; // (Used internally.)
 long caretTime; // (Used internally.)
 short caretState; // (Used internally.)
 short just; // Text alignment.
 short teLength; // Length of text.
 Handle hText; // Handle to text to be edited.
 long hDispatchRec; // Handle to TextEdit dispatch structure.
 short clikStuff; // (Used internally)
 short crOnly; // If < 0, new line at Return only.
 short txFont; // Text font. // If multistyled edit struct (txSize = -1),
 StyleField txFace; // Chara style. // these bytes are used as a handle
 SInt8 filler; // // to a style structure (TEStyleHandle).
 short txMode; // Pen mode.
 short txSize; // Font size. -1 in multistyled TextEdit structure.
 GrafPtr inPort; // Pointer to grafPort for this TextEdit structure.
 HighHookUPP highHook; // Used for text highlighting, caret appearance.
 CaretHookUPP caretHook; // Used from assembly language.
 short nLines; // Number of lines.
 short lineStarts[16001]; // Positions of line starts.
};
typedef struct TERec TERec;
typedef TERec *TEPtr;
typedef TEPtr *TEHandle;

Style Structure
struct TEStyleRec
{
 short nRuns; // Number of style runs.
 short nStyles; // Size of style table.
 STHandle styleTab; // Handle to style table.
 LHHandle lhTab; // Handle to line-height table.
 long teRefCon; // Reserved for application use.
 NullStHandle nullStyle; // Handle to style set at null selection.

21-22 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 StyleRun runs[8001]; // ARRAY [0..8000] OF StyleRun.
};
typedef struct TEStyleRec TEStyleRec;
typedef TEStyleRec *TEStylePtr;
typedef TEStylePtr *TEStyleHandle;

Text Style Structure
struct TextStyle
{
 short tsFont; // Font (family) number.
 StyleField tsFace; // Character Style.
 short tsSize; // Size in point.
 RGBColor tsColor; // Absolute (RGB) color.
};
typedef struct TextStyle TextStyle;
typedef TextStyle *TextStylePtr;
typedef TextStylePtr *TextStyleHandle;

Functions
Creating and Disposing of TextEdit Structures
TEHandle TENew(const Rect *destRect,const Rect *viewRect);
TEHandle TEStyleNew(const Rect *destRect,const Rect *viewRect);
void TEDispose(TEHandle hTE);

Activating and Deactivating a TextEdit Structure
void TEActivate(TEHandle hTE);
void TEDeactivate(TEHandle hTE);

Setting and Getting aTextEdit Structure's Text
void TEKey(short key,TEHandle hTE);
void TESetText(const void *text,long length,TEHandle hTE);
CharsHandle TEGetText(TEHandle hTE);

Setting the Caret and Selection Range
void TEIdle(TEHandle hTE);
void TEClick(Point pt,Boolean fExtend,TEHandle h);
void TESetSelect(long selStart,long selEnd,TEHandle hTE);

Displaying and Scrolling Text
void TESetAlignment(short just,TEHandle hTE);
void TEUpdate(const Rect *rUpdate,TEHandle hTE);
void TETextBox(const void *text,long length,const Rect *box,short just);
void TECalText(TEHandle hTE);
long TEGetHeight(long endLine,long startLine,TEHandle hTE);
void TEScroll(short dh,short dv,TEHandle hTE);
void TEPinScroll(short dh,short dv,TEHandle hTE);
void TEAutoView(Boolean fAuto,TEHandle hTE);
void TESelView(TEHandle hTE);

Modifying the Text of a TextEdit Structure
void TEDelete(TEHandle hTE);
void TEInsert(const void *text,long length,TEHandle hTE);
void TEStyleInsert(const void *text,long length,StScrpHandle hST,TEHandle hTE);
void TECut(TEHandle hTE);
void TECopy(TEHandle hTE);
void TEPaste(TEHandle hTE);
OSErr TEFromScrap(void);
OSErr TEToScrap(void);

Managing the TextEdit Private Scrap
Handle TEScrapHandle(void);
long TEGetScrapLength(void);
void TESetScrapLength(long length);

Using Byte Offsets and Corresponding Points
short TEGetOffset(Point pt,TEHandle hTE);
Point TEGetPoint(short offset,TEHandle hTE);

Customising TextEdit
void TESetClickLoop(TEClickLoopUPP clikProc,TEHandle hTE);;
void TESetWordBreak(WordBreakUPP wBrkProc,TEHandle hTE);;
void TECustomHook(TEIntHook which, UniversalProcPtr *addr,TEHandle hTE);

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-23

Additional TextEdit Features
short TEFeatureFlag(short feature,short action,TEHandle hTE);

Main Constants, Data Types and Functions Relating to
Dates, Times and Numbers

Constants
StringToDate and StringToTime Status Values
fatalDateTime = 0x8000 Mask to a fatal error.
longDateFound = 1 Mask to long date found.
leftOverChars = 2 Mask to warn of left over characters.
sepNotIntlSep = 4 Mask to warn of non-standard separators.
fieldOrderNotIntl = 8 Mask to warn of non-standard field order.
extraneousStrings = 16 Mask to warn of unparsable strings in text.
tooManySeps = 32 Mask to warn of too many separators.
sepNotConsistent = 64 Mask to warn of inconsistent separators.
tokenErr = 0x8100 Mask for 'tokenizer err encountered'.
cantReadUtilities = 0x8200
dateTimeNotFound = 0x8400
dateTimeInvalid = 0x8800

FormatResultType Values for Numeric Conversion Functions
fFormatOK = 0
fBestGuess = 1
fOutOfSynch = 2
fSpuriousChars = 3
fMissingDelimiter = 4
fExtraDecimal = 5
fMissingLiteral = 6
fExtraExp = 7
fFormatOverflow = 8
fFormStrIsNAN = 9
fBadPartsTable = 10
fExtraPercent = 11
fExtraSeparator = 12
fEmptyFormatString = 13

Data Types
typedef short StringToDateStatus;
typedef SInt8 DateForm;
typedef short FormatStatus;
typedef Sint8 FormatResultType;

Data Cache Structure
struct DateCacheRecord
{
 short hidden[256]; // Only for temporary use.
};
typedef struct DateCacheRecord DateCacheRecord;
typedef DateCacheRecord *DateCachePtr;

Number Format Specification Structure
struct NumFormatString
{
 UInt8 fLength;
 UInt8 fVersion;
 char data[254]; // Private data.
};
typedef struct NumFormatString NumFormatString;
typedef NumFormatString NumFormatStringRec;

Functions
Getting Date-Time Values and Structures
void GetDateTime(unsigned long *secs);
void GetTime(DateTimeRec *d);

21-24 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

Converting Between Date-Time values and Structures
void DateToSeconds(const DateTimeRec *d,unsigned long *secs);
void SecondsToDate(unsigned long secs,DateTimeRec *d);
void LongDateToSeconds(const LongDateRec *lDate,LongDateTime *lSecs);
void LongSecondsToDate(LongDateTime *lSecs,LongDateRec *lDate);

Converting Date-Time Strings Into Internal Numeric Representation
OSErr InitDateCache(DateCachePtr theCache);
StringToDateStatus StringToDate(Ptr textPtr,long textLen,DateCachePtr theCache,
 long *lengthUsed,LongDateRec *dateTime);
StringToDateStatus StringToTime(Ptr textPtr,long textLen,DateCachePtr theCache,
 long *lengthUsed,LongDateRec *dateTime);

Converting Long Date and Time Values Into Strings
void DateString(long dateTime,DateForm longFlag,Str255 result);
void TimeString(long dateTime,Boolean wantSeconds,Str255 result);
void LongDateString(LongDateTime *dateTime,DateForm longFlag,Str255 result,
 Handle intlHandle);
void LongTimeString(LongDateTime *dateTime,Boolean wantSeconds,Str255 result,
 Handle intlHandle);

Converting Between Integers and Strings
void StringToNum(ConstStr255Param theString,long *theNum);
void NumToString(long theNum,Str255 theString);

Using Number Format Specification Strings For International Number
Formatting
FormatStatus StringToFormatRec(ConstStr255Param inString,const NumberParts *partsTable,
 NumFormatString *outString)
FormatStatus FormatRecToString(const NumFormatString *myCanonical,
 const NumberParts *partsTable,Str255 outString,TripleInt positions)

Converting Between Strings and Floating Point Numbers
FormatStatus ExtendedToString(const extended80 x,const NumFormatString *myCanonical,
 const NumberParts *partsTable,Str255 outString)
FormatStatus StringToExtended(ConstStr255Param source,const NumFormatString *myCanonical,
 const NumberParts *partsTable,extended80 *x)

Moving To and From Extended
void x80told(const extended80 *x80,long double *x);
void ldtox80(const long double *x,extended80 *x80);
double x80tod(const extended80 *x80);
void dtox80(const double *x, extended80 *x80);

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-25

Demonstration Program MonoTextEdit Listing
// ***
// MonoTextEdit.c CARBON EVENT MODEL
// ***
//
// This program demonstrates:
//
// • A "bare-bones" monostyled text editor.
//
// • A Help dialog which features the integrated scrolling of multistyled text and pictures.
//
// In the monostyled text editor demonstration, a panel is displayed at the bottom of all
// opened windows. This panel displays the edit record length, number of lines, line height,
// destination rectangle (top), scroll bar/scroller value, and scroll bar/scroller maximum
// value.
//
// The bulk of the source code for the Help dialog is contained in the file HelpDialog.c.
// The dialog itself displays information intended to assist the user in adapting the Help
// dialog source code and resources to the requirements of his/her own application.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, and Help dialog pop-up
// menus (preload, non-purgeable).
//
// • A 'CNTL' resources (purgeable) for the vertical scroll bar in the text editor window.
//
// • 'TEXT' and associated 'styl' resources (all purgeable) for the Help dialog.
//
// • 'PICT' resources (purgeable) for the Help dialog.
//
// • A 'STR#' resource (purgeable) containing error text strings.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>

//
………
…………………………………………………… defines

#define rMenubar 128
#define mAppleApplication 128
#define iAbout 1
#define iHelp 2
#define mFile 129
#define iNew 1
#define iOpen 2
#define iClose 4
#define iSaveAs 6
#define iQuit 12
#define mEdit 130
#define iUndo 1
#define iCut 3
#define iCopy 4
#define iPaste 5
#define iClear 6
#define iSelectAll 7
#define rVScrollbar 128
#define rErrorStrings 128
#define eMenuBar 1
#define eWindow 2
#define eDocStructure 3
#define eEditRecord 4
#define eExceedChara 5
#define eNoSpaceCut 6
#define eNoSpacePaste 7

21-26 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

#define kMaxTELength 32767
#define kTab 0x09
#define kBackSpace 0x08
#define kForwardDelete 0x7F
#define kReturn 0x0D
#define kEscape 0x1B
#define topLeft(r) (((Point *) &(r))[0])
#define botRight(r) (((Point *) &(r))[1])

//
………
………………………………………………… typedefs

typedef struct
{
 TEHandle textEditStrucHdl;
 ControlRef vScrollbarRef;
} docStructure, **docStructureHandle;

//
………
…………………………… global variables

Boolean gRunningOnX = false;
MenuID gHelpMenu;
ControlActionUPP gScrollActionFunctionUPP;
TEClickLoopUPP gCustomClickLoopUPP;
SInt16 gNumberOfWindows = 0;
SInt16 gOldControlValue;

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
OSStatus appEventHandler (EventHandlerCallRef,EventRef,void *);
OSStatus windowEventHandler (EventHandlerCallRef,EventRef,void *);
void doIdle (void);
void doKeyEvent (SInt8);
void scrollActionFunction (ControlRef,SInt16);
void doInContent (Point,Boolean);
void doDrawContent (WindowPtr);
void doActivateDeactivate (WindowRef,Boolean);
WindowRef doNewDocWindow (void);
EventHandlerUPP doGetHandlerUPP (void);
Boolean customClickLoop (void);
void doSetScrollBarValue (ControlRef,SInt16 *);
void doAdjustMenus (void);
void doMenuChoice (MenuID,MenuItemIndex);
void doFileMenu (MenuItemIndex);
void doEditMenu (MenuItemIndex);
SInt16 doGetSelectLength (TEHandle);
void doAdjustScrollbar (WindowRef);
void doAdjustCursor (WindowRef);
void doCloseWindow (WindowRef);
void doSaveAsFile (TEHandle);
void doOpenCommand (void);
void doOpenFile (FSSpec);
void doDrawDataPanel (WindowRef);
void doErrorAlert (SInt16);
void navEventFunction (NavEventCallbackMessage,NavCBRecPtr,
 NavCallBackUserData);

extern void doHelp (void);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 EventTypeSpec applicationEvents[] = { { kEventClassApplication, kEventAppActivated },
 { kEventClassCommand, kEventProcessCommand },
 { kEventClassMenu, kEventMenuEnableItems },
 { kEventClassMouse, kEventMouseMoved } };

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-27

 //
………
……………………… do preliminaries

 doPreliminaries();

 //
………
set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 doErrorAlert(eMenuBar);
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 }

 menuRef = GetMenuRef(mAppleApplication);
 DeleteMenuItem(menuRef,iHelp);

 HMGetHelpMenu(&menuRef,NULL);
 InsertMenuItem(menuRef,"\pMonoTextEdit Help",0);
 gHelpMenu = GetMenuID(menuRef);

 gRunningOnX = true;
 }
 else
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 SetMenuItemCommandID(menuRef,iQuit,kHICommandQuit);
 }

 // ……… create universal
procedure pointers

 gScrollActionFunctionUPP = NewControlActionUPP((ControlActionProcPtr) scrollActionFunction);
 gCustomClickLoopUPP = NewTEClickLoopUPP((TEClickLoopProcPtr) customClickLoop);

 // ……… install
application event handler

 InstallApplicationEventHandler(NewEventHandlerUPP((EventHandlerProcPtr) appEventHandler),
 GetEventTypeCount(applicationEvents),applicationEvents,
 0,NULL);

 //
………
………………………… install a timer

 InstallEventLoopTimer(GetCurrentEventLoop(),0,TicksToEventTime(GetCaretTime()),
 NewEventLoopTimerUPP((EventLoopTimerProcPtr) doIdle),NULL,
 NULL);

 //
………
…… open an untitled window

 doNewDocWindow();

 // ……
run application event loop

 RunApplicationEventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{

21-28 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 MoreMasterPointers(192);
 InitCursor();
}

// *** appEventHandler

OSStatus appEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void * userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 HICommand hiCommand;
 MenuID menuID;
 MenuItemIndex menuItem;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassApplication:
 if(eventKind == kEventAppActivated)
 SetThemeCursor(kThemeArrowCursor);
 break;

 case kEventClassCommand:
 if(eventKind == kEventProcessCommand)
 {
 GetEventParameter(eventRef,kEventParamDirectObject,typeHICommand,NULL,
 sizeof(HICommand),NULL,&hiCommand);
 menuID = GetMenuID(hiCommand.menu.menuRef);
 menuItem = hiCommand.menu.menuItemIndex;
 if((hiCommand.commandID != kHICommandQuit) &&
 ((menuID >= mAppleApplication && menuID <= mEdit)) || menuID == gHelpMenu)
 {
 doMenuChoice(menuID,menuItem);
 result = noErr;
 }
 }
 break;

 case kEventClassMenu:
 if(eventKind == kEventMenuEnableItems)
 {
 GetWindowClass(FrontWindow(),&windowClass);
 if(windowClass == kDocumentWindowClass)
 doAdjustMenus();
 result = noErr;
 }
 break;

 case kEventClassMouse:
 if(eventKind == kEventMouseMoved)
 {
 GetWindowClass(FrontWindow(),&windowClass);
 if(windowClass == kDocumentWindowClass)
 doAdjustCursor(FrontWindow());
 result = noErr;
 }
 break;

 return result;
}

// ** windowEventHandler

OSStatus windowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void* userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 WindowRef windowRef;
 UInt32 modifiers;
 Point mouseLocation;
 Boolean shiftKeyDown = false;
 ControlRef controlRef;
 ControlPartCode controlPartCode;

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-29

 SInt8 charCode;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassWindow: // event class window
 GetEventParameter(eventRef,kEventParamDirectObject,typeWindowRef,NULL,sizeof(windowRef),
 NULL,&windowRef);
 switch(eventKind)
 {
 case kEventWindowDrawContent:
 doDrawContent(windowRef);
 result = noErr;
 break;

 case kEventWindowActivated:
 doActivateDeactivate(windowRef,true);
 result = noErr;
 break;

 case kEventWindowDeactivated:
 doActivateDeactivate(windowRef,false);
 result = noErr;
 break;

 case kEventWindowClickContentRgn:
 GetEventParameter(eventRef,kEventParamMouseLocation,typeQDPoint,NULL,
 sizeof(mouseLocation),NULL,&mouseLocation);
 SetPortWindowPort(FrontWindow());
 GlobalToLocal(&mouseLocation);
 GetEventParameter(eventRef,kEventParamKeyModifiers,typeUInt32,NULL,
 sizeof(modifiers),NULL,&modifiers);
 if(modifiers & shiftKey)
 shiftKeyDown = true;
 doInContent(mouseLocation,shiftKeyDown);
 result = noErr;
 break;

 case kEventWindowClose:
 doCloseWindow(windowRef);
 result = noErr;
 break;
 }
 break;

 case kEventClassMouse: // event class mouse
 switch(eventKind)
 {
 case kEventMouseDown:
 GetEventParameter(eventRef,kEventParamMouseLocation,typeQDPoint,NULL,
 sizeof(mouseLocation),NULL,&mouseLocation);
 SetPortWindowPort(FrontWindow());
 GlobalToLocal(&mouseLocation);
 controlRef = FindControlUnderMouse(mouseLocation,FrontWindow(),&controlPartCode);
 if(controlRef)
 {
 gOldControlValue = GetControlValue(controlRef);
 TrackControl(controlRef,mouseLocation,gScrollActionFunctionUPP);
 result = noErr;
 }
 break;
 }
 break;

 case kEventClassKeyboard: // event class keyboard
 switch(eventKind)
 {
 case kEventRawKeyDown:
 case kEventRawKeyRepeat:
 GetEventParameter(eventRef,kEventParamKeyMacCharCodes,typeChar,NULL,
 sizeof(charCode),NULL,&charCode);
 GetEventParameter(eventRef,kEventParamKeyModifiers,typeUInt32,NULL,
 sizeof(modifiers),NULL,&modifiers);
 if((modifiers & cmdKey) == 0)
 doKeyEvent(charCode);
 result = noErr;
 break;

21-30 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 }
 break;
 }

 return result;
}

// ** doIdle

void doIdle(void)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;

 windowRef = FrontWindow();
 if(GetWindowKind(windowRef) == kApplicationWindowKind)
 {
 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));
 if(docStrucHdl != NULL)
 TEIdle((*docStrucHdl)->textEditStrucHdl);
 }
}

// ** doKeyEvent

void doKeyEvent(SInt8 charCode)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 selectionLength;

 if(charCode <= kEscape && charCode != kBackSpace && charCode != kReturn)
 return;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 if(charCode == kTab)
 {
 // Do tab key handling here if required.
 }
 else if(charCode == kForwardDelete)
 {
 selectionLength = doGetSelectLength(textEditStrucHdl);
 if(selectionLength == 0)
 (*textEditStrucHdl)->selEnd += 1;
 TEDelete(textEditStrucHdl);
 doAdjustScrollbar(windowRef);
 }
 else
 {
 selectionLength = doGetSelectLength(textEditStrucHdl);
 if(((*textEditStrucHdl)->teLength - selectionLength + 1) < kMaxTELength)
 {
 TEKey(charCode,textEditStrucHdl);
 doAdjustScrollbar(windowRef);
 }
 else
 doErrorAlert(eExceedChara);
 }

 doDrawDataPanel(windowRef);
}

// ** scrollActionFunction

void scrollActionFunction(ControlRef controlRef,SInt16 partCode)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 linesToScroll;
 SInt16 controlValue, controlMax;

 windowRef = GetControlOwner(controlRef);
 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));;
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-31

 controlValue = GetControlValue(controlRef);
 controlMax = GetControlMaximum(controlRef);

 if(partCode)
 {
 if(partCode != kControlIndicatorPart)
 {
 switch(partCode)
 {
 case kControlUpButtonPart:
 case kControlDownButtonPart:
 linesToScroll = 1;
 break;

 case kControlPageUpPart:
 case kControlPageDownPart:
 linesToScroll = (((*textEditStrucHdl)->viewRect.bottom -
 (*textEditStrucHdl)->viewRect.top) /
 (*textEditStrucHdl)->lineHeight) - 1;
 break;
 }

 if((partCode == kControlDownButtonPart) || (partCode == kControlPageDownPart))
 linesToScroll = -linesToScroll;

 linesToScroll = controlValue - linesToScroll;
 if(linesToScroll < 0)
 linesToScroll = 0;
 else if(linesToScroll > controlMax)
 linesToScroll = controlMax;

 SetControlValue(controlRef,linesToScroll);

 linesToScroll = controlValue - linesToScroll;
 }
 else
 {
 linesToScroll = gOldControlValue - controlValue;
 gOldControlValue = controlValue;
 }

 if(linesToScroll != 0)
 {
 TEScroll(0,linesToScroll * (*textEditStrucHdl)->lineHeight,textEditStrucHdl);
 doDrawDataPanel(windowRef);
 }
 }
}

// *** doInContent

void doInContent(Point mouseLocation,Boolean shiftKeyDown)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 if(PtInRect(mouseLocation,&(*textEditStrucHdl)->viewRect))
 TEClick(mouseLocation,shiftKeyDown,textEditStrucHdl);
}

// *** doDrawContent

void doDrawContent(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 GrafPtr oldPort;
 RgnHandle visibleRegionHdl = NewRgn();
 Rect portRect;

 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

21-32 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 GetPortVisibleRegion(GetWindowPort(windowRef),visibleRegionHdl);
 EraseRgn(visibleRegionHdl);

 UpdateControls(windowRef,visibleRegionHdl);

 GetWindowPortBounds(windowRef,&portRect);
 TEUpdate(&portRect,textEditStrucHdl);

 doDrawDataPanel(windowRef);

 DisposeRgn(visibleRegionHdl);
 SetPort(oldPort);
}

// *** doActivateDocWindow

void doActivateDeactivate(WindowRef windowRef,Boolean becomingActive)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;

 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 if(becomingActive)
 {
 SetPortWindowPort(windowRef);

 (*textEditStrucHdl)->viewRect.bottom = ((((*textEditStrucHdl)->viewRect.bottom -
 (*textEditStrucHdl)->viewRect.top) /
 (*textEditStrucHdl)->lineHeight) *
 (*textEditStrucHdl)->lineHeight) +
 (*textEditStrucHdl)->viewRect.top;
 (*textEditStrucHdl)->destRect.bottom = (*textEditStrucHdl)->viewRect.bottom;

 TEActivate(textEditStrucHdl);
 ActivateControl((*docStrucHdl)->vScrollbarRef);
 doAdjustScrollbar(windowRef);
 doAdjustCursor(windowRef);
 }
 else
 {
 TEDeactivate(textEditStrucHdl);
 DeactivateControl((*docStrucHdl)->vScrollbarRef);
 }
}

// ** doNewDocWindow

WindowRef doNewDocWindow(void)
{
 WindowRef windowRef;
 OSStatus osError;
 Rect contentRect = { 100,100,400,595 };
 WindowAttributes attributes = kWindowStandardHandlerAttribute |
 kWindowStandardDocumentAttributes;
 docStructureHandle docStrucHdl;
 Rect portRect, destAndViewRect;
 EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowDrawContent },
 { kEventClassWindow, kEventWindowActivated },
 { kEventClassWindow, kEventWindowDeactivated },
 { kEventClassWindow, kEventWindowClickContentRgn },
 { kEventClassWindow, kEventWindowClose },
 { kEventClassMouse, kEventMouseDown },
 { kEventClassKeyboard, kEventRawKeyDown },
 { kEventClassKeyboard, kEventRawKeyRepeat } };

 osError = CreateNewWindow(kDocumentWindowClass,attributes,&contentRect,&windowRef);
 if(osError != noErr)
 {
 doErrorAlert(eWindow);
 return NULL;
 }

 ChangeWindowAttributes(windowRef,0,kWindowResizableAttribute);
 RepositionWindow(windowRef,NULL,kWindowCascadeOnMainScreen);

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-33

 SetWTitle(windowRef,"\puntitled");
 SetPortWindowPort(windowRef);
 TextSize(10);

 InstallWindowEventHandler(windowRef,doGetHandlerUPP(),GetEventTypeCount(windowEvents),
 windowEvents,0,NULL);

 if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
 {
 doErrorAlert(eDocStructure);
 return NULL;
 }
 SetWRefCon(windowRef,(SInt32) docStrucHdl);

 gNumberOfWindows ++;

 (*docStrucHdl)->vScrollbarRef = GetNewControl(rVScrollbar,windowRef);

 GetWindowPortBounds(windowRef,&portRect);
 destAndViewRect = portRect;
 destAndViewRect.right -= 15;
 destAndViewRect.bottom -= 15;
 InsetRect(&destAndViewRect,2,2);

 MoveHHi((Handle) docStrucHdl);
 HLock((Handle) docStrucHdl);

 if(!((*docStrucHdl)->textEditStrucHdl = TENew(&destAndViewRect,&destAndViewRect)))
 {
 DisposeWindow(windowRef);
 gNumberOfWindows --;
 DisposeHandle((Handle) docStrucHdl);
 doErrorAlert(eEditRecord);
 return NULL;
 }

 HUnlock((Handle) docStrucHdl);

 TESetClickLoop(gCustomClickLoopUPP,(*docStrucHdl)->textEditStrucHdl);
 TEAutoView(true,(*docStrucHdl)->textEditStrucHdl);
 TEFeatureFlag(teFOutlineHilite,1,(*docStrucHdl)->textEditStrucHdl);

 ShowWindow(windowRef);

 return windowRef;
}

// *** doGetHandlerUPP

EventHandlerUPP doGetHandlerUPP(void)
{
 static EventHandlerUPP windowEventHandlerUPP;

 if(windowEventHandlerUPP == NULL)
 windowEventHandlerUPP = NewEventHandlerUPP((EventHandlerProcPtr) windowEventHandler);

 return windowEventHandlerUPP;
}

// *** customClickLoop

Boolean customClickLoop(void)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 GrafPtr oldPort;
 RgnHandle oldClip;
 Rect tempRect, portRect;
 Point mouseXY;
 SInt16 linesToScroll = 0;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);
 oldClip = NewRgn();

21-34 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 GetClip(oldClip);
 SetRect(&tempRect,-32767,-32767,32767,32767);
 ClipRect(&tempRect);

 GetMouse(&mouseXY);
 GetWindowPortBounds(windowRef,&portRect);

 if(mouseXY.v < portRect.top)
 {
 linesToScroll = 1;
 doSetScrollBarValue((*docStrucHdl)->vScrollbarRef,&linesToScroll);
 if(linesToScroll != 0)
 TEScroll(0,linesToScroll * ((*textEditStrucHdl)->lineHeight),textEditStrucHdl);
 }
 else if(mouseXY.v > portRect.bottom)
 {
 linesToScroll = -1;
 doSetScrollBarValue((*docStrucHdl)->vScrollbarRef,&linesToScroll);
 if(linesToScroll != 0)
 TEScroll(0,linesToScroll * ((*textEditStrucHdl)->lineHeight),textEditStrucHdl);
 }

 if(linesToScroll != 0)
 doDrawDataPanel(windowRef);

 SetClip(oldClip);
 DisposeRgn(oldClip);
 SetPort(oldPort);

 return true;
}

// *** doSetScrollBarValue

void doSetScrollBarValue(ControlRef controlRef,SInt16 *linesToScroll)
{
 SInt16 controlValue, controlMax;

 controlValue = GetControlValue(controlRef);
 controlMax = GetControlMaximum(controlRef);

 *linesToScroll = controlValue - *linesToScroll;
 if(*linesToScroll < 0)
 *linesToScroll = 0;
 else if(*linesToScroll > controlMax)
 *linesToScroll = controlMax;

 SetControlValue(controlRef,*linesToScroll);
 *linesToScroll = controlValue - *linesToScroll;
}

// *** doAdjustMenus

void doAdjustMenus(void)
{
 MenuRef fileMenuHdl, editMenuHdl;
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 ScrapRef scrapRef;
 OSStatus osError;
 ScrapFlavorFlags scrapFlavorFlags;

 fileMenuHdl = GetMenuRef(mFile);
 editMenuHdl = GetMenuRef(mEdit);

 if(gNumberOfWindows > 0)
 {
 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 EnableMenuItem(fileMenuHdl,iClose);

 if((*textEditStrucHdl)->selStart < (*textEditStrucHdl)->selEnd)
 {
 EnableMenuItem(editMenuHdl,iCut);
 EnableMenuItem(editMenuHdl,iCopy);
 EnableMenuItem(editMenuHdl,iClear);

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-35

 }
 else
 {
 DisableMenuItem(editMenuHdl,iCut);
 DisableMenuItem(editMenuHdl,iCopy);
 DisableMenuItem(editMenuHdl,iClear);
 }

 GetCurrentScrap(&scrapRef);

 osError = GetScrapFlavorFlags(scrapRef,kScrapFlavorTypeText,&scrapFlavorFlags);
 if(osError == noErr)
 EnableMenuItem(editMenuHdl,iPaste);
 else
 DisableMenuItem(editMenuHdl,iPaste);

 if((*textEditStrucHdl)->teLength > 0)
 {
 EnableMenuItem(fileMenuHdl,iSaveAs);
 EnableMenuItem(editMenuHdl,iSelectAll);
 }
 else
 {
 DisableMenuItem(fileMenuHdl,iSaveAs);
 DisableMenuItem(editMenuHdl,iSelectAll);
 }
 }
 else
 {
 DisableMenuItem(fileMenuHdl,iClose);
 DisableMenuItem(fileMenuHdl,iSaveAs);
 DisableMenuItem(editMenuHdl,iClear);
 DisableMenuItem(editMenuHdl,iSelectAll);
 }

 DrawMenuBar();
}

// ** doMenuChoice

void doMenuChoice(MenuID menuID, MenuItemIndex menuItem)
{
 if(menuID == 0)
 return;

 if(gRunningOnX)
 if(menuID == gHelpMenu)
 if(menuItem == 1)
 doHelp();

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 else if(menuItem == iHelp)
 doHelp();
 break;

 case mFile:
 doFileMenu(menuItem);
 break;

 case mEdit:
 doEditMenu(menuItem);
 break;
 }
}

// ** doFileMenu

void doFileMenu(MenuItemIndex menuItem)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;

 switch(menuItem)
 {

21-36 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 case iNew:
 if(windowRef = doNewDocWindow())
 ShowWindow(windowRef);
 break;

 case iOpen:
 doOpenCommand();
 doAdjustScrollbar(FrontWindow());
 break;

 case iClose:
 doCloseWindow(FrontWindow());
 break;

 case iSaveAs:
 docStrucHdl = (docStructureHandle) (GetWRefCon(FrontWindow()));
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;
 doSaveAsFile(textEditStrucHdl);
 break;
 }
}

// ** doEditMenu

void doEditMenu(MenuItemIndex menuItem)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt32 totalSize, contigSize, newSize;
 SInt16 selectionLength;
 ScrapRef scrapRef;
 Size sizeOfTextData;

 windowRef = FrontWindow();

 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 switch(menuItem)
 {
 case iUndo:
 break;

 case iCut:
 if(ClearCurrentScrap() == noErr)
 {
 PurgeSpace(&totalSize,&contigSize);
 selectionLength = doGetSelectLength(textEditStrucHdl);
 if(selectionLength > contigSize)
 doErrorAlert(eNoSpaceCut);
 else
 {
 TECut(textEditStrucHdl);
 doAdjustScrollbar(windowRef);
 TEToScrap();
 if(TEToScrap() != noErr)
 ClearCurrentScrap();
 }
 }
 break;

 case iCopy:
 if(ClearCurrentScrap() == noErr)
 TECopy(textEditStrucHdl);
 TEToScrap();
 if(TEToScrap() != noErr)
 ClearCurrentScrap();
 break;

 case iPaste:
 GetCurrentScrap(&scrapRef);;
 GetScrapFlavorSize(scrapRef,kScrapFlavorTypeText,&sizeOfTextData);
 newSize = (*textEditStrucHdl)->teLength + sizeOfTextData;
 if(newSize > kMaxTELength)
 doErrorAlert(eNoSpacePaste);
 else
 {
 if(TEFromScrap() == noErr)

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-37

 {
 TEPaste(textEditStrucHdl);
 doAdjustScrollbar(windowRef);
 }
 }
 break;

 case iClear:
 TEDelete(textEditStrucHdl);
 doAdjustScrollbar(windowRef);
 break;

 case iSelectAll:
 TESetSelect(0,(*textEditStrucHdl)->teLength,textEditStrucHdl);
 break;
 }

 doDrawDataPanel(windowRef);
}

// *** doGetSelectLength

SInt16 doGetSelectLength(TEHandle textEditStrucHdl)
{
 SInt16 selectionLength;

 selectionLength = (*textEditStrucHdl)->selEnd - (*textEditStrucHdl)->selStart;
 return selectionLength;
}

// *** doAdjustScrollbar

void doAdjustScrollbar(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 numberOfLines, controlMax, controlValue;

 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));;
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 numberOfLines = (*textEditStrucHdl)->nLines;
 if(*(*(*textEditStrucHdl)->hText + (*textEditStrucHdl)->teLength - 1) == kReturn)
 numberOfLines += 1;

 controlMax = numberOfLines - (((*textEditStrucHdl)->viewRect.bottom -
 (*textEditStrucHdl)->viewRect.top) /
 (*textEditStrucHdl)->lineHeight);
 if(controlMax < 0)
 controlMax = 0;
 SetControlMaximum((*docStrucHdl)->vScrollbarRef,controlMax);

 controlValue = ((*textEditStrucHdl)->viewRect.top - (*textEditStrucHdl)->destRect.top) /
 (*textEditStrucHdl)->lineHeight;
 if(controlValue < 0)
 controlValue = 0;
 else if(controlValue > controlMax)
 controlValue = controlMax;

 SetControlValue((*docStrucHdl)->vScrollbarRef,controlValue);

 SetControlViewSize((*docStrucHdl)->vScrollbarRef,(*textEditStrucHdl)->viewRect.bottom -
 (*textEditStrucHdl)->viewRect.top);

 TEScroll(0,((*textEditStrucHdl)->viewRect.top - (*textEditStrucHdl)->destRect.top) -
 (GetControlValue((*docStrucHdl)->vScrollbarRef) *
 (*textEditStrucHdl)->lineHeight),textEditStrucHdl);
}

// ** doAdjustCursor

void doAdjustCursor(WindowRef windowRef)
{
 GrafPtr oldPort;
 RgnHandle arrowRegion, iBeamRegion;
 Rect portRect, cursorRect;
 Point mouseXY;

 GetPort(&oldPort);

21-38 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 SetPortWindowPort(windowRef);

 arrowRegion = NewRgn();
 iBeamRegion = NewRgn();
 SetRectRgn(arrowRegion,-32768,-32768,32766,32766);

 GetWindowPortBounds(windowRef,&portRect);
 cursorRect = portRect;
 cursorRect.bottom -= 15;
 cursorRect.right -= 15;
 LocalToGlobal(&topLeft(cursorRect));
 LocalToGlobal(&botRight(cursorRect));

 RectRgn(iBeamRegion,&cursorRect);
 DiffRgn(arrowRegion,iBeamRegion,arrowRegion);

 GetGlobalMouse(&mouseXY);

 if(PtInRgn(mouseXY,iBeamRegion))
 SetThemeCursor(kThemeIBeamCursor);
 else
 SetThemeCursor(kThemeArrowCursor);

 DisposeRgn(arrowRegion);
 DisposeRgn(iBeamRegion);

 SetPort(oldPort);
}

// *** doCloseWindow

void doCloseWindow(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;

 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));;

 DisposeControl((*docStrucHdl)->vScrollbarRef);
 TEDispose((*docStrucHdl)->textEditStrucHdl);
 DisposeHandle((Handle) docStrucHdl);
 DisposeWindow(windowRef);

 gNumberOfWindows --;
}

// ** doSaveAsFile

void doSaveAsFile(TEHandle textEditStrucHdl)
{
 OSErr osError = noErr;
 NavDialogOptions dialogOptions;
 NavEventUPP navEventFunctionUPP;
 WindowRef windowRef;
 OSType fileType;
 NavReplyRecord navReplyStruc;
 AEKeyword theKeyword;
 DescType actualType;
 FSSpec fileSpec;
 SInt16 fileRefNum;
 Size actualSize;
 SInt32 dataLength;
 Handle editTextHdl;

 osError = NavGetDefaultDialogOptions(&dialogOptions);

 if(osError == noErr)
 {
 windowRef = FrontWindow();

 fileType = 'TEXT';

 navEventFunctionUPP = NewNavEventUPP((NavEventProcPtr) navEventFunction);
 osError = NavPutFile(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,fileType,
 'kjBb',NULL);
 DisposeNavEventUPP(navEventFunctionUPP);

 if(navReplyStruc.validRecord && osError == noErr)
 {
 if((osError = AEGetNthPtr(&(navReplyStruc.selection),1,typeFSS,&theKeyword,

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-39

 &actualType,&fileSpec,sizeof(fileSpec),&actualSize)) == noErr)

 {
 if(!navReplyStruc.replacing)
 {
 osError = FSpCreate(&fileSpec,'kjBb',fileType,navReplyStruc.keyScript);
 if(osError != noErr)
 {
 NavDisposeReply(&navReplyStruc);
 }
 }

 if(osError == noErr)
 osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum);

 if(osError == noErr)
 {
 SetWTitle(windowRef,fileSpec.name);
 dataLength = (*textEditStrucHdl)->teLength;
 editTextHdl = (*textEditStrucHdl)->hText;
 FSWrite(fileRefNum,&dataLength,*editTextHdl);
 }

 NavCompleteSave(&navReplyStruc,kNavTranslateInPlace);
 }

 NavDisposeReply(&navReplyStruc);
 }
 }
}

// *** doOpenCommand

void doOpenCommand(void)
{
 OSErr osError = noErr;
 NavDialogOptions dialogOptions;
 NavEventUPP navEventFunctionUPP;
 NavReplyRecord navReplyStruc;
 SInt32 index, count;
 AEKeyword theKeyword;
 DescType actualType;
 FSSpec fileSpec;
 Size actualSize;
 FInfo fileInfo;

 osError = NavGetDefaultDialogOptions(&dialogOptions);

 if(osError == noErr)
 {
 navEventFunctionUPP = NewNavEventUPP((NavEventProcPtr) navEventFunction);
 osError = NavGetFile(NULL,&navReplyStruc,&dialogOptions,navEventFunctionUPP,NULL,NULL,
 NULL,NULL);
 DisposeNavEventUPP(navEventFunctionUPP);

 if(osError == noErr && navReplyStruc.validRecord)
 {
 osError = AECountItems(&(navReplyStruc.selection),&count);
 if(osError == noErr)
 {
 for(index=1;index<=count;index++)
 {
 osError = AEGetNthPtr(&(navReplyStruc.selection),index,typeFSS,&theKeyword,
 &actualType,&fileSpec,sizeof(fileSpec),&actualSize);
 {
 if((osError = FSpGetFInfo(&fileSpec,&fileInfo)) == noErr)
 doOpenFile(fileSpec);
 }
 }
 }

 NavDisposeReply(&navReplyStruc);
 }
 }
}

// ** doOpenFile

void doOpenFile(FSSpec fileSpec)

21-40 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 fileRefNum;
 SInt32 textLength;
 Handle textBuffer;

 if((windowRef = doNewDocWindow()) == NULL)
 return;

 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));;
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 SetWTitle(windowRef,fileSpec.name);

 FSpOpenDF(&fileSpec,fsCurPerm,&fileRefNum);

 SetFPos(fileRefNum,fsFromStart,0);
 GetEOF(fileRefNum,&textLength);

 if(textLength > 32767)
 textLength = 32767;

 textBuffer = NewHandle((Size) textLength);

 FSRead(fileRefNum,&textLength,*textBuffer);

 MoveHHi(textBuffer);
 HLock(textBuffer);

 TESetText(*textBuffer,textLength,textEditStrucHdl);

 HUnlock(textBuffer);
 DisposeHandle(textBuffer);

 FSClose(fileRefNum);

 (*textEditStrucHdl)->selStart = 0;
 (*textEditStrucHdl)->selEnd = 0;

 doDrawContent(windowRef);
}

// *** doDrawDataPanel

void doDrawDataPanel(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 RGBColor whiteColour = { 0xFFFF, 0xFFFF, 0xFFFF };
 RGBColor blackColour = { 0x0000, 0x0000, 0x0000 };
 RGBColor blueColour = { 0x1818, 0x4B4B, 0x8181 };
 ControlRef controlRef;
 Rect panelRect;
 Str255 textString;

 SetPortWindowPort(windowRef);

 docStrucHdl = (docStructureHandle) (GetWRefCon(windowRef));;
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;
 controlRef = (*docStrucHdl)->vScrollbarRef;

 MoveTo(0,282);
 LineTo(495,282);

 RGBForeColor(&whiteColour);
 RGBBackColor(&blueColour);
 SetRect(&panelRect,0,283,495,300);
 EraseRect(&panelRect);

 MoveTo(3,295);
 DrawString("\pteLength nLines lineHeight");

 MoveTo(225,295);
 DrawString("\pdestRect.top controlValue contrlMax");

 SetRect(&panelRect,47,284,88,299);
 EraseRect(&panelRect);

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-41

 SetRect(&panelRect,124,284,149,299);
 EraseRect(&panelRect);
 SetRect(&panelRect,204,284,222,299);
 EraseRect(&panelRect);
 SetRect(&panelRect,286,284,323,299);
 EraseRect(&panelRect);
 SetRect(&panelRect,389,284,416,299);
 EraseRect(&panelRect);
 SetRect(&panelRect,472,284,495,299);
 EraseRect(&panelRect);

 NumToString((SInt32) (*textEditStrucHdl)->teLength,textString);
 MoveTo(47,295);
 DrawString(textString);

 NumToString((SInt32) (*textEditStrucHdl)->nLines,textString);
 MoveTo(124,295);
 DrawString(textString);

 NumToString((SInt32) (*textEditStrucHdl)->lineHeight,textString);
 MoveTo(204,295);
 DrawString(textString);

 NumToString((SInt32) (*textEditStrucHdl)->destRect.top,textString);
 MoveTo(286,295);
 DrawString(textString);

 NumToString((SInt32) GetControlValue(controlRef),textString);
 MoveTo(389,295);
 DrawString(textString);

 NumToString((SInt32) GetControlMaximum(controlRef),textString);
 MoveTo(472,295);
 DrawString(textString);

 RGBForeColor(&blackColour);
 RGBBackColor(&whiteColour);
}

// ** doErrorAlert

void doErrorAlert(SInt16 errorCode)
{
 Str255 errorString;
 SInt16 itemHit;

 GetIndString(errorString,rErrorStrings,errorCode);

 if(errorCode < eWindow)
 {
 StandardAlert(kAlertStopAlert,errorString,NULL,NULL,&itemHit);
 ExitToShell();
 }
 else
 {
 StandardAlert(kAlertCautionAlert,errorString,NULL,NULL,&itemHit);
 }
}

// ** navEventFunction

void navEventFunction(NavEventCallbackMessage callBackSelector,NavCBRecPtr callBackParms,
 NavCallBackUserData callBackUD)
{
}

// ***
// HelpDialog.c
// ***

//
………
………………………………………………… includes

#include <Carbon.h>

//
………
…………………………………………………… defines

21-42 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

#define eHelpDialog 8
#define eHelpDocStructure 9
#define eHelpText 10
#define eHelpPicture 11
#define eHelpControls 12
#define rTextIntroduction 128
#define rTextCreatingText 129
#define rTextModifyHelp 130
#define rPictIntroductionBase 128
#define rPictCreatingTextBase 129
#define kTextInset 4

//
………
………………………………………………… typedefs

typedef struct
{
 Rect bounds;
 PicHandle pictureHdl;
} pictInfoStructure;

typedef struct
{
 TEHandle textEditStrucHdl;
 ControlRef scrollbarHdl;
 SInt16 pictCount;
 pictInfoStructure *pictInfoStructurePtr;
} docStructure, ** docStructureHandle;

typedef struct
{
 RGBColor backColour;
 PixPatHandle backPixelPattern;
 Pattern backBitPattern;
} backColourPattern;

//
………
…………………………… global variables

GrafPtr gOldPort;
EventHandlerUPP helpWindowEventHandlerUPP;
ControlUserPaneDrawUPP userPaneDrawFunctionUPP;
ControlActionUPP actionFunctionUPP;
SInt16 gTextResourceID;
SInt16 gPictResourceBaseID;
RgnHandle gSavedClipRgn = NULL;

//
………
…………………… function prototypes

void doHelp (void);
OSStatus helpWindowEventHandler (EventHandlerCallRef,EventRef,void *);
void userPaneDrawFunction (ControlRef,SInt16);
Boolean doGetText (WindowRef,SInt16,Rect);
Boolean doGetPictureInfo (WindowRef,SInt16);
void actionFunction (ControlRef,SInt16);
void doScrollTextAndPicts (WindowRef);
void doDrawPictures (WindowRef,Rect *);
void doCloseHelp (WindowRef);
void doDisposeDescriptors (void);
void doSetBackgroundWhite (void);

extern void doErrorAlert (SInt16);

// ** doHelp

void doHelp(void)
{
 OSStatus osError;
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 ControlRef controlRef;
 ControlID controlID;
 Rect windowRect = { 0, 0, 353,382 };
 Rect pushButtonRect = { 312,297,332,366 };

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-43

 Rect userPaneRect = { 16, 16, 296,351 };
 Rect scrollBarRect = { 16, 350,296,366 };
 Rect popupButtonRect = { 312,12, 332,256 };
 Rect destRect, viewRect;
 EventTypeSpec dialogEvents[] = {{ kEventClassControl, kEventControlClick } };

 GetPort(&gOldPort);

 // ……… create universal
procedure pointers

 helpWindowEventHandlerUPP = NewEventHandlerUPP((EventHandlerProcPtr)
 helpWindowEventHandler);
 userPaneDrawFunctionUPP = NewControlUserPaneDrawUPP((ControlUserPaneDrawProcPtr)
 userPaneDrawFunction);
 actionFunctionUPP = NewControlActionUPP((ControlActionProcPtr) actionFunction);

 //
………
create modal class window

 osError = CreateNewWindow(kMovableModalWindowClass,kWindowStandardHandlerAttribute,
 &windowRect,&windowRef);
 if(osError == noErr)
 {
 RepositionWindow(windowRef,FrontWindow(),kWindowAlertPositionOnMainScreen);
 SetThemeWindowBackground(windowRef,kThemeBrushDialogBackgroundActive,false);

 InstallWindowEventHandler(windowRef,helpWindowEventHandlerUPP,
 GetEventTypeCount(dialogEvents),dialogEvents,windowRef,NULL);

 if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
 {
 doErrorAlert(eHelpDocStructure);
 DisposeWindow(windowRef);
 doDisposeDescriptors();
 return;
 }

 SetWRefCon(windowRef,(SInt32) docStrucHdl);
 SetPortWindowPort(windowRef);

 // …………………………………………………………………… create root, push button, user pane, and scroll bar controls

 CreateRootControl(windowRef,&controlRef);

 if((osError = CreatePushButtonControl(windowRef,&pushButtonRect,CFSTR("OK"),&controlRef))
 == noErr)
 {
 SetWindowDefaultButton(windowRef,controlRef);
 controlID.id = 'done';
 SetControlID(controlRef,&controlID);
 }

 if(osError == noErr)
 {
 if((osError = CreateUserPaneControl(windowRef,&userPaneRect,0,&controlRef)) == noErr)
 {
 SetControlData(controlRef,kControlEntireControl,kControlUserPaneDrawProcTag,
 sizeof(userPaneDrawFunctionUPP),(Ptr) &userPaneDrawFunctionUPP);
 }
 }

 if(osError == noErr)
 {
 if((osError = CreateScrollBarControl(windowRef,&scrollBarRect,0,0,1,0,true,
 actionFunctionUPP,&controlRef)) == noErr)
 (*docStrucHdl)->scrollbarHdl = controlRef;
 controlID.id = 'scro';
 SetControlID(controlRef,&controlID);
 }

 if(osError == noErr)
 {
 if((osError = CreatePopupButtonControl(windowRef,&popupButtonRect,CFSTR("Title:"),131,
 false,-1,0,0,&controlRef)) == noErr)
 controlID.id = 'popu';
 SetControlID(controlRef,&controlID);
 }

21-44 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 if(osError != noErr)
 {
 doErrorAlert(eHelpControls);
 DisposeWindow(windowRef);
 doDisposeDescriptors();
 return;
 }
 }
 else
 {
 doErrorAlert(eHelpDialog);
 doDisposeDescriptors();
 return;
 }
 // …………………………………………………………………… set destination and view rectangles, create TextEdit structure

 InsetRect(&userPaneRect,kTextInset,kTextInset / 2);
 destRect = viewRect = userPaneRect;
 (*docStrucHdl)->textEditStrucHdl = TEStyleNew(&destRect,&viewRect);

 // …………………………………………………… initialise picture information structure field of document structure

 (*docStrucHdl)->pictInfoStructurePtr = NULL;

 // ………………………………………………………………………… assign resource IDs of first topic's 'TEXT'/'styl' resources

 gTextResourceID = rTextIntroduction;
 gPictResourceBaseID = rPictIntroductionBase;

 // …………………………………………………………………………………………………… load text resources and insert into edit
structure

 if(!(doGetText(windowRef,gTextResourceID,viewRect)))
 {
 doCloseHelp(windowRef);
 doDisposeDescriptors();
 return;
 }

 // ……………………… search for option-space charas in text and load same number of 'PICT' resources

 if(!(doGetPictureInfo(windowRef,gPictResourceBaseID)))
 {
 doCloseHelp(windowRef);
 doDisposeDescriptors();
 return;
 }

 // ………………………………………………………………………………… create an empty region for saving the old clipping region

 gSavedClipRgn = NewRgn();

 // …… show
window and run modal loop

 ShowWindow(windowRef);
 RunAppModalLoopForWindow(windowRef);
}

// ** helpWindowEventHandler

OSStatus helpWindowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void *userData)
{
 OSStatus result = eventNotHandledErr;
 WindowRef windowRef;
 UInt32 eventClass;
 UInt32 eventKind;
 Point mouseLocation;
 ControlRef controlRef;
 ControlPartCode controlPartCode;
 ControlID controlID;
 MenuItemIndex menuItem;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 Rect viewRect;

 windowRef = userData;

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-45

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 if(eventClass == kEventClassControl)
 {
 if(eventKind == kEventControlClick)
 {
 GetEventParameter(eventRef,kEventParamMouseLocation,typeQDPoint,NULL,
 sizeof(mouseLocation),NULL,&mouseLocation);
 GlobalToLocal(&mouseLocation);
 controlRef = FindControlUnderMouse(mouseLocation,windowRef,&controlPartCode);
 if(controlRef)
 {
 GetControlID(controlRef,&controlID);
 if(controlID.id == 'done') // push button
 {
 if(TrackControl(controlRef,mouseLocation,NULL))
 {
 QuitAppModalLoopForWindow(windowRef);
 doCloseHelp(windowRef);
 doDisposeDescriptors();
 result = noErr;
 }
 }
 if(controlID.id == 'scro') // scroll bar
 {
 TrackControl(controlRef,mouseLocation,actionFunctionUPP);
 result = noErr;
 }
 else if(controlID.id == 'popu') // pop-up menu button
 {
 TrackControl(controlRef,mouseLocation,(ControlActionUPP) -1);
 menuItem = GetControlValue(controlRef);
 switch(menuItem)
 {
 case 1:
 gTextResourceID = rTextIntroduction;
 gPictResourceBaseID = rPictIntroductionBase;
 break;

 case 2:
 gTextResourceID = rTextCreatingText;
 gPictResourceBaseID = rPictCreatingTextBase;
 break;

 case 3:
 gTextResourceID = rTextModifyHelp;
 break;
 }

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;
 viewRect = (*textEditStrucHdl)->viewRect;

 if(!(doGetText(windowRef,gTextResourceID,viewRect)))
 {
 doCloseHelp(windowRef);
 doDisposeDescriptors();
 return;
 }

 if(!(doGetPictureInfo(windowRef,gPictResourceBaseID)))
 {
 doCloseHelp(windowRef);
 doDisposeDescriptors();
 return;
 }

 doDrawPictures(windowRef,&viewRect);

 result = noErr;
 }
 }
 }
 }

 return result;
}

21-46 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

// ** userPaneDrawFunction

void userPaneDrawFunction(ControlRef controlRef,SInt16 thePart)
{
 Rect itemRect, viewRect;
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 Boolean inState;

 windowRef = GetControlOwner(controlRef);

 GetControlBounds(controlRef,&itemRect);
 InsetRect(&itemRect,1,1);
 itemRect.right += 15;

 if(IsWindowVisible(windowRef))
 inState = IsWindowHilited(windowRef);
 DrawThemeListBoxFrame(&itemRect,inState);

 doSetBackgroundWhite();
 EraseRect(&itemRect);

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;
 viewRect = (*textEditStrucHdl)->viewRect;

 TEUpdate(&viewRect,textEditStrucHdl);
 doDrawPictures(windowRef,&viewRect);
}

// *** doGetText

Boolean doGetText(WindowRef windowRef,SInt16 textResourceID,Rect viewRect)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 Handle helpTextHdl;
 StScrpHandle stylScrpStrucHdl;
 SInt16 numberOfLines, heightOfText, heightToScroll;

 doSetBackgroundWhite();

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 TESetSelect(0,32767,textEditStrucHdl);
 TEDelete(textEditStrucHdl);

 (*textEditStrucHdl)->destRect = (*textEditStrucHdl)->viewRect;
 SetControlValue((*docStrucHdl)->scrollbarHdl,0);

 helpTextHdl = GetResource('TEXT',textResourceID);
 if(helpTextHdl == NULL)
 {
 doErrorAlert(eHelpText);
 return false;
 }

 stylScrpStrucHdl = (StScrpHandle) GetResource('styl',textResourceID);
 if(stylScrpStrucHdl == NULL)
 {
 doErrorAlert(eHelpText);
 return false;
 }

 TEStyleInsert(*helpTextHdl,GetHandleSize(helpTextHdl),stylScrpStrucHdl,textEditStrucHdl);

 ReleaseResource(helpTextHdl);
 ReleaseResource((Handle) stylScrpStrucHdl);

 numberOfLines = (*textEditStrucHdl)->nLines;
 heightOfText = TEGetHeight((SInt32) numberOfLines,1,textEditStrucHdl);

 if(heightOfText > (viewRect.bottom - viewRect.top))
 {
 heightToScroll = TEGetHeight((SInt32) numberOfLines,1,textEditStrucHdl) -
 (viewRect.bottom - viewRect.top);
 SetControlMaximum((*docStrucHdl)->scrollbarHdl,heightToScroll);

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-47

 ActivateControl((*docStrucHdl)->scrollbarHdl);
 SetControlViewSize((*docStrucHdl)->scrollbarHdl,(*textEditStrucHdl)->viewRect.bottom -
 (*textEditStrucHdl)->viewRect.top);
 }
 else
 {
 DeactivateControl((*docStrucHdl)->scrollbarHdl);
 }

 return true;
}

// ** doGetPictureInfo

Boolean doGetPictureInfo(WindowRef windowRef,SInt16 firstPictID)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 Handle textHdl;
 SInt32 offset, textSize;
 SInt16 numberOfPicts, a, lineHeight, fontAscent;
 SInt8 optionSpace[1] = "\xCA";
 pictInfoStructure *pictInfoPtr;
 Point picturePoint;
 TextStyle whatStyle;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if((*docStrucHdl)->pictInfoStructurePtr != NULL)
 {
 for(a=0;a<(*docStrucHdl)->pictCount;a++)
 ReleaseResource((Handle) (*docStrucHdl)->pictInfoStructurePtr[a].pictureHdl);

 DisposePtr((Ptr) (*docStrucHdl)->pictInfoStructurePtr);
 (*docStrucHdl)->pictInfoStructurePtr = NULL;
 }

 (*docStrucHdl)->pictCount = 0;

 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;
 textHdl = (*textEditStrucHdl)->hText;

 textSize = GetHandleSize(textHdl);
 offset = 0;
 numberOfPicts = 0;

 HLock(textHdl);

 offset = Munger(textHdl,offset,optionSpace,1,NULL,0);
 while((offset >= 0) && (offset <= textSize))
 {
 numberOfPicts++;
 offset++;
 offset = Munger(textHdl,offset,optionSpace,1,NULL,0);
 }

 if(numberOfPicts == 0)
 {
 HUnlock(textHdl);
 return true;
 }

 pictInfoPtr = (pictInfoStructure *) NewPtr(sizeof(pictInfoStructure) * numberOfPicts);
 (*docStrucHdl)->pictInfoStructurePtr = pictInfoPtr;

 offset = 0L;

 for(a=0;a<numberOfPicts;a++)
 {
 pictInfoPtr[a].pictureHdl = GetPicture(firstPictID + a);
 if(pictInfoPtr[a].pictureHdl == NULL)
 {
 doErrorAlert(eHelpPicture);
 return false;
 }

 offset = Munger(textHdl,offset,optionSpace,1,NULL,0);
 picturePoint = TEGetPoint((SInt16)offset,textEditStrucHdl);

21-48 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 TEGetStyle(offset,&whatStyle,&lineHeight,&fontAscent,textEditStrucHdl);
 picturePoint.v -= lineHeight;
 offset++;
 pictInfoPtr[a].bounds = (**pictInfoPtr[a].pictureHdl).picFrame;

 OffsetRect(&pictInfoPtr[a].bounds,
 (((*textEditStrucHdl)->destRect.right + (*textEditStrucHdl)->destRect.left) -
 (pictInfoPtr[a].bounds.right + pictInfoPtr[a].bounds.left)) / 2,
 - pictInfoPtr[a].bounds.top + picturePoint.v);
 }

 (*docStrucHdl)->pictCount = a;

 HUnlock(textHdl);

 return true;
}

// ** actionFunction

void actionFunction(ControlRef scrollbarHdl,SInt16 partCode)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 delta, oldValue, offset, lineHeight, fontAscent;
 Point thePoint;
 Rect viewRect, portRect;
 TextStyle style;

 if(partCode)
 {
 windowRef = GetControlOwner(scrollbarHdl);
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;
 viewRect = (*textEditStrucHdl)->viewRect;
 thePoint.h = viewRect.left + kTextInset;

 if(partCode != kControlIndicatorPart)
 {
 switch(partCode)
 {
 case kControlUpButtonPart:
 thePoint.v = viewRect.top - 4;
 offset = TEGetOffset(thePoint,textEditStrucHdl);
 thePoint = TEGetPoint(offset,textEditStrucHdl);
 TEGetStyle(offset,&style,&lineHeight,&fontAscent,textEditStrucHdl);
 delta = thePoint.v - lineHeight - viewRect.top;
 break;

 case kControlDownButtonPart:
 thePoint.v = viewRect.bottom + 2;
 offset = TEGetOffset(thePoint,textEditStrucHdl);
 thePoint = TEGetPoint(offset,textEditStrucHdl);
 delta = thePoint.v - viewRect.bottom;
 break;

 case kControlPageUpPart:
 thePoint.v = viewRect.top + 2;
 offset = TEGetOffset(thePoint,textEditStrucHdl);
 thePoint = TEGetPoint(offset,textEditStrucHdl);
 TEGetStyle(offset,&style,&lineHeight,&fontAscent,textEditStrucHdl);
 thePoint.v += lineHeight - fontAscent;
 thePoint.v -= viewRect.bottom - viewRect.top;
 offset = TEGetOffset(thePoint,textEditStrucHdl);
 thePoint = TEGetPoint(offset,textEditStrucHdl);
 TEGetStyle(offset,&style,&lineHeight,&fontAscent,textEditStrucHdl);
 delta = thePoint.v - viewRect.top;
 if(offset == 0)
 delta -= lineHeight;
 break;

 case kControlPageDownPart:
 thePoint.v = viewRect.bottom - 2;
 offset = TEGetOffset(thePoint,textEditStrucHdl);
 thePoint = TEGetPoint(offset,textEditStrucHdl);
 TEGetStyle(offset,&style,&lineHeight,&fontAscent,textEditStrucHdl);
 thePoint.v -= fontAscent;
 thePoint.v += viewRect.bottom - viewRect.top;

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-49

 offset = TEGetOffset(thePoint,textEditStrucHdl);
 thePoint = TEGetPoint(offset,textEditStrucHdl);
 TEGetStyle(offset,&style,&lineHeight,&fontAscent,textEditStrucHdl);
 delta = thePoint.v - lineHeight - viewRect.bottom;
 if(offset == (**textEditStrucHdl).teLength)
 delta += lineHeight;
 break;
 }

 oldValue = GetControlValue(scrollbarHdl);

 if(((delta < 0) && (oldValue > 0)) || ((delta > 0) &&
 (oldValue < GetControlMaximum(scrollbarHdl))))
 {
 GetClip(gSavedClipRgn);
 GetWindowPortBounds(windowRef,&portRect);
 ClipRect(&portRect);

 SetControlValue(scrollbarHdl,oldValue + delta);
 SetClip(gSavedClipRgn);
 }
 }

 doScrollTextAndPicts(windowRef);
 }
}

// ** doScrollTextAndPicts

void doScrollTextAndPicts(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 scrollDistance, oldScroll;
 Rect updateRect;

 doSetBackgroundWhite();

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 oldScroll = (*textEditStrucHdl)->viewRect.top -(*textEditStrucHdl)->destRect.top;
 scrollDistance = oldScroll - GetControlValue((*docStrucHdl)->scrollbarHdl);
 if(scrollDistance == 0)
 return;

 TEScroll(0,scrollDistance,textEditStrucHdl);

 if((*docStrucHdl)->pictCount == 0)
 return;

 updateRect = (*textEditStrucHdl)->viewRect;

 if(scrollDistance > 0)
 {
 if(scrollDistance < (updateRect.bottom - updateRect.top))
 updateRect.bottom = updateRect.top + scrollDistance;
 }
 else
 {
 if(- scrollDistance < (updateRect.bottom - updateRect.top))
 updateRect.top = updateRect.bottom + scrollDistance;
 }

 doDrawPictures(windowRef,&updateRect);
}

// ** doDrawPictures

void doDrawPictures(WindowRef windowRef,Rect *updateRect)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 pictCount, pictIndex, vOffset;
 PicHandle thePictHdl;
 Rect pictLocRect, dummyRect;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

21-50 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 vOffset = (*textEditStrucHdl)->destRect.top -
 (*textEditStrucHdl)->viewRect.top - kTextInset;
 pictCount = (*docStrucHdl)->pictCount;

 for(pictIndex = 0;pictIndex < pictCount;pictIndex++)
 {
 pictLocRect = (*docStrucHdl)->pictInfoStructurePtr[pictIndex].bounds;
 OffsetRect(&pictLocRect,0,vOffset);

 if(!SectRect(&pictLocRect,updateRect,&dummyRect))
 continue;

 thePictHdl = (*docStrucHdl)->pictInfoStructurePtr[pictIndex].pictureHdl;

 LoadResource((Handle) thePictHdl);
 HLock((Handle) thePictHdl);

 GetClip(gSavedClipRgn);
 ClipRect(updateRect);
 DrawPicture(thePictHdl,&pictLocRect);

 SetClip(gSavedClipRgn);
 HUnlock((Handle) thePictHdl);
 }
}

// *** doCloseHelp

void doCloseHelp(WindowRef windowRef)
{
 docStructureHandle docStrucHdl;
 TEHandle textEditStrucHdl;
 SInt16 a;

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 textEditStrucHdl = (*docStrucHdl)->textEditStrucHdl;

 if(gSavedClipRgn)
 DisposeRgn(gSavedClipRgn);

 if((*docStrucHdl)->textEditStrucHdl)
 TEDispose((*docStrucHdl)->textEditStrucHdl);

 if((*docStrucHdl)->pictInfoStructurePtr)
 {
 for(a=0;a<(*docStrucHdl)->pictCount;a++)
 ReleaseResource((Handle) (*docStrucHdl)->pictInfoStructurePtr[a].pictureHdl);
 DisposePtr((Ptr) (*docStrucHdl)->pictInfoStructurePtr);
 }

 DisposeHandle((Handle) docStrucHdl);
 DisposeWindow(windowRef);
 SetPort(gOldPort);
}

// ** doDisposeDescriptors

void doDisposeDescriptors(void)
{
 DisposeEventHandlerUPP(helpWindowEventHandlerUPP);
 DisposeControlUserPaneDrawUPP(userPaneDrawFunctionUPP);
 DisposeControlActionUPP(actionFunctionUPP);
}

// ** doSetBackgroundWhite

void doSetBackgroundWhite(void)
{
 RGBColor whiteColour = { 0xFFFF, 0xFFFF, 0xFFFF };
 Pattern whitePattern;

 RGBBackColor(&whiteColour);
 BackPat(GetQDGlobalsWhite(&whitePattern));
}

// ***

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-51

Demonstration Program MonoTextEdit Comments
When this program is run, the user should explore both the text editor and the Help dialog.

Text Editor
In the text editor, the user should perform all the actions usually associated with a simple text editor, that is:

• Open a new document window, open an existing 'TEXT' file for display in a new document window, and save a document to
a 'TEXT' file. (A 'TEXT' file titled "MonoTextEdit Document" is included.)

• Enter new text and use the Edit menu Cut, Copy, Paste, and Clear commands to edit the text. (Pasting between
documents and other applications is supported.)

• Select text by clicking and dragging, double-clicking a word, shift-clicking, and choosing the Select All command from the
Edit menu. Also select large amounts of text by clicking in the text and dragging the cursor above or below the window so
as to invoke auto-scrolling.

• Scroll a large document by dragging the scroll box/scroller (live scrolling is used), clicking once in a scroll arrow or gray
area/track, and holding the mouse down in a scroll arrow or gray area/track.

Whenever any action is taken, the user should observe the changes to the values displayed in the data panel at the bottom of
each window. In particular, the relationship between the destination rectangle and scroll bar control value should be noted.

The user should also note that outline highlighting is activated for all windows and that the forward-delete key is supported by
the application. (The forward-delete key is not supported by TextEdit.)

Help Dialog
The user should choose MonoTextEdit Help from the Mac OS 8/9 Apple menu or Mac OS X Help menu to open the Help dialog
and then scroll through the three help topics, which may be chosen in the pop-up menu at the bottom of the dialog. The help
topics contain documentation on the Help dialog which supplements the source code comments below.

MonoTextEdit.c
defines
kMaxTELength represents the maximum allowable number of bytes in a TextEdit structure. kTab, kBackSpace,
kForwardDelete, kReturn, and kEscape representing the character codes generated by the tab, delete, forward delete, Return
and escape keys.

typedefs
The docStructure data type will be used for a small document structure comprising a handle to a TextEdit structure and a
handle to a vertical scroll bar.

Global Variables
scrollActionFunctionUPP will be assigned a universal procedure pointer to an action (callback) function for the scroll bar.
customClickLoopUPP will be assigned a universal procedure pointer to a custom click loop (callback) function.
gOldControlValue will be assigned the scroll bar's control value.

main
The main function creates universal procedure pointers for the application-defined scroll action and custom click loop
(callback) functions and installs a timer set to fire repeatedly at the interval returned by a call to GetCaretTime. When the
timer fires, the function doIdle is called.

windowEventHandler
When the kEventClassMouse event type is received, if the call to FindControlUnderMouse reveals that a control (that is, the
vertical scroll bar) is under the mouse, TrackControl is called with a universal procedure pointer to an action function passed
in the third parameter.

When the kEventRawKeyDown and kEventRawKeyRepeat event types are received, the function doKeyEvent is called only if
the Command key was not down.

doIdle
doIdle is called whenever the installed timer fires.

The first line gets a reference to the front window. If the front window is a document window, a handle to the window's
document structure is retrieved. A handle to the TextEdit structure associated with the window is stored in the document
structure's textEditStrucHdl field. This is passed in the call to TEIdle, which blinks the insertion point caret.

doKeyEvent
doKeyEvent is called when the kEventRawKeyDown and kEventRawKeyRepeat event types are received. It handles all key-
down events that are not Command key equivalents.

21-52 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

If the character code is equal to that for the escape key or lower, and except if it is the carriage return or backspace
character, the function simply returns.

The first three lines get a handle to the TextEdit structure whose handle is stored in the front window's document structure.

The next line filters out the tab key character code. (TextEdit does not support the tab key and some applications may need
to provide a tab key handler.)

The next character code to be filtered out is the forward-delete key character code. TextEdit does not recognise this key, so
this else if block provides forward-delete key support for the program. The first line in this block gets the current selection
length from the TextEdit structure. If this is zero (that is, there is no selection range and an insertion point is being displayed),
the selEnd field is incremented by one. This, in effect, creates a selection range comprising the character following the
insertion point. TEDelete deletes the current selection range from the TextEdit structure. Such deletions could change the
number of text lines in the TextEdit structure, requiring the vertical scroll bar to be adjusted; hence the call to the function
doAdjustScrollbar.

Processing of those character codes which have not been filtered out is performed in the else block. A new character must
not be allowed to be inserted if the TextEdit limit of 32,767 characters will be exceeded. Accordingly, and given that TEKey
replaces the selection range with the character passed to it, the first step is to get the current selection length. If the current
number of characters minus the selection length plus 1 is less than 32,767, the character code is passed to TEKey for insertion
into the TextEdit structure. In addition, and since all this could change the number of lines in the TextEdit structure, the scroll
bar adjustment function is called.

If the TextEdit limit will be exceeded by accepting the character, an alert is invoked advising the user of the situation.

The last line calls a function which prints data extracted from the edit text and control structures at the bottom of the window.

scrollActionFunction
scrollActionFunction is associated with the vertical scroll bar. It is the callback function which will be repeatedly called by
TrackControl when the kEventMouseDown event type is received. It will be called repeatedly while the mouse button remains
down in the scroll box/scroller, scroll arrows or gray areas/track of the vertical scroll bar.

The first line gets a reference to the window object for the window which "owns" the control. The next two lines get a handle
to the TextEdit structure associated with the window.

Within the outer if block, the first if block executes if the control part is not the scroll box/scroller (that is, the indicator). The
purpose of the switch is to get a value into the variable linesToScroll. If the mouse-down was in a scroll arrow, that value will
be 1. If the mouse-down was in a gray area/track, that value will be equivalent to one less than the number of text lines that
will fit in the view rectangle. (Subtracting 1 from the total number of lines that will fit in the view rectangle ensures that the
line of text at the bottom/top of the view rectangle prior to a gray area/track scroll will be visible at the top/bottom of the
window after the scroll.)

Immediately after the switch, the value in linesToScroll is changed to a negative value if the mouse-down occurred in either
the down scroll arrow or down gray area/track.

The next block ensures that no scrolling action will occur if the document is currently scrolled fully up (control value equals
control maximum) or fully down (control value equals 0). In either case, linesToScroll will be set to 0, meaning that the call to
TEScroll near the end of the function will not occur.

SetControlValue sets the control value to the value just previously calculated, that is, to the current control value minus the
value in linesToScroll.

The next line sets the value in linesToScroll back to what it was before the line linesToScroll = controlvalue - linesToScroll
executed. This value, multiplied by the value in the lineHeight field of the TextEdit structure, is later passed to TEScroll as the
parameter which specifies the number of pixels to scroll.

If the control part is the scroll box/scroller (that is, the indicator), the variable linesToScroll is assigned a value equal to the
control's value as it was the last time this function was called minus the control's current value. The global variable which
holds the control's "old" value is then assigned the control's current value preparatory to the next call to this function.

With the number of lines to scroll determined, TEScroll is called to scroll the text within the view rectangle by the number of
pixels specified in the second parameter. (Positive values scroll the text towards the bottom of the screen. Negative values
scroll the text towards the top.)

The last line is for demonstration purposes only. It calls the function which prints data extracted from the edit and control
structures at the bottom of the window.

doInContent
doInContent is called when the kEventWindowClickContentRgn event type is received.

The first three lines retrieve a handle to the TextEdit structure associated with the front window. The call to PtInRect checks
whether the mouse-down occurred within the view rectangle. (Note that the view rectangle is in local coordinates, so the
mouse-down coordinates passed as the first parameter to the PtInRect call must also be in local coordinates.) If the mouse-
down was in the view rectangle, TEClick is called to advise TextEdit of the mouse-down event. Note that the position of the
shift key is passed in the second parameter. (TEClick's behaviour depends on the position of the shift key.)

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-53

doDrawContent
doDrawContent is called when the kEventWindowDrawContent event type is received.

The first two lines get the handle to the TextEdit structure associated with the window.

UpdateControls is called to draw the scroll bar. The call to TEUpdate draws the text currently in the TextEdit structure.

doActivateDeactivate
doActivateDeactivatew performs window activation/deactivation. It is called when the kEventWindowActivated and
kEventWindowDecativated event types are received.

The first two lines retrieve a handle to the TextEdit structure for the window. If the window is becoming active, its graphics
port is set as the current graphics port. The bottom of the view rectangle is then adjusted so that the height of the view
rectangle is an exact multiple of the value in the lineHeight field of the TextEdit structure. (This avoids the possibility of only
part of the full height of a line of text appearing at the bottom of the view rectangle.) TEActivate activates the TextEdit
structure associated with the window, ActivateControl activates the scroll bar, doAdjustScrollbar adjusts the scroll bar, and
doAdjustCursor adjusts the cursor shape.

If the window is becoming inactive, TEDeactivate deactivates the TextEdit structure associated with the window and
DeactivateControl deactivates the scroll bar.

doNewDocWindow
doNewDocWindow is called at program launch and when the user chooses New or Open from the File menu. It opens a new
window, associates a document structure with that window, creates a vertical scroll bar, creates a monostyled TextEdit
structure, installs the custom click loop (callback) function, enables automatic scrolling, and enables outline highlighting.

The call to CreateNewWindow and the following block creates a new window with the standard document window attributes
less the size box/resize control. Note that the window's graphics port is set as the current port before the later call to TENew.
(Since the TextEdit structure assumes the drawing environment specified in the graphics port structure, setting the graphics
port must be done before TENew creates the TextEdit structure.)

The call to TextSize sets the text size. This, together with the default application font, will be copied from the graphics port to
the TextEdit structure when TENew is called.)

After the window event handler is installed, a document structure is created and the handle stored in the window's window
object. The following line increments the global variable which keeps track of the number of open windows. GetNewControl
creates a vertical scroll bar and assigns a handle to it to the appropriate field of the document structure. The next block
establishes the view and destination rectangles two pixels inside the window's port rectangle less the scroll bar.

MoveHHi and HLock move the document structure high and lock it. A monostyled TextEdit structure is then created by TENew
and its handle is assigned to the appropriate field of the document structure. (If this call is not successful, the window and
scroll bar are disposed of, an error alert is displayed, and the function returns.) The handle to the document structure is then
unlocked.

TESetClickLoop installs the universal procedure pointer to the custom click loop (callback) function customClickLoop in the
clickLoop field of the TextEdit structure. TEAutoView enables automatic scrolling for the TextEdit structure. TEFeatureFlag
enables outline highlighting for the TextEdit structure.

The last line returns a reference to the newly opened window's window object.

customClickLoop
customClickLoop replaces the default click loop function so as to provide for scroll bar adjustment in concert with automatic
scrolling. Following a mouse-down within the view rectangle, customClickLoop is called repeatedly by TEClick as long as the
mouse button remains down.

The first three lines retrieve a handle to the TextEdit structure associated with the window. The next two lines save the
current graphics port and set the window's graphics port as the current port.

The window's current clip region will have been set by TextEdit to be equivalent to the view rectangle. Since the scroll bar
has to be redrawn, the clipping region must be temporarily reset to include the scroll bar. Accordingly, GetClip saves the
current clipping region and the following two lines set the clipping region to the bounds of the coordinate plane.

GetMouse gets the current position of the cursor. If the cursor is above the top of the port rectangle, the text must be scrolled
downwards. Accordingly, the variable linesToScroll is set to 1. The subsidiary function doSetScrollBarValue (see below) is
then called to, amongst other things, reset the scroll bar's value. Note that the value in linesToScroll may be modified by
doSetScrollBarValue. If linesToScroll is not set to 0 by doSetScrollBarValue, TEScroll is called to scroll the text by a number of
pixels equivalent to the value in the lineHeight field of the TextEdit structure, and in a downwards direction.

If the cursor is below the bottom of the port rectangle, the same process occurs except that the variable linesToScroll is set to
-1, thus causing an upwards scroll of the text (assuming that the value in linesToScroll is not changed to 0 by
doSetScrollBarValue).

If scrolling has occurred, doDrawDataPanel redraws the data panel. SetClip restores the clipping region to that established by
the view rectangle and SetPort restores the saved graphics port. Finally, the last line returns true. (A return of false would
cause TextEdit to stop calling customClickLoop, as if the user had released the mouse button.)

21-54 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

doSetScrollBarValue
doSetScrollBarValue is called from customClickLoop. Apart from setting the scroll bar's value so as to cause the scroll box to
follow up automatic scrolling, the function checks whether the limits of scrolling have been reached.

The first two lines get the current control value and the current control maximum value. At the next block, the value in the
variable linesToScroll will be set to either 0 (if the current control value is 0) or equivalent to the control maximum value (if
the current control value is equivalent to the control maximum value. If these modifications do not occur, the value in
linesToScroll will remain as established at the first line in this block, that is, the current control value minus the value in
linesToScroll as passed to the function.

SetControlValue sets the control's value to the value in linesToScroll. The last line sets the value in linesToScroll to 0 if the
limits of scrolling have already been reached, or to the value as it was when the doSetScrollBarValue function was entered.

doAdjustMenus
doAdjustMenus adjusts the menus. Much depends on whether any windows are currently open.

If at least one window is open, the first three lines in the if block get a handle to the TextEdit structure associated with the
front window and the first call to EnableMenuItem enables the Close item in the File menu. If there is a current selection
range, the Cut, Copy, and Clear items are enabled, otherwise they are disabled. If there is data of flavour type 'TEXT' in the
scrap (the call to GetScrapFlavourFlags), the Paste item is enabled, otherwise it is disabled. If there is any text in the TextEdit
structure, the SaveAs and Select All items are enabled, otherwise they are disabled.

If no windows are open, the Close, SaveAs, Clear, and Select All items are disabled.

doMenuChoice
If the MonoTextEdit Help item in the Mac OS 8/9 Apple menu or Mac OS X Help menu is chosen, the function doHelp is called.

doFileMenu
doFileMenu handles File menu choices, calling the appropriate functions according to the menu item chosen. In the SaveAs
case, a handle to the TextEdit structure associated with the front window is retrieved and passed as a parameter to the
function doSaveAsFile.

Note that, because TextEdit, rather than file operations, is the real focus of this program, the file-related code has been kept
to a minimum, even to the extent of having no Save-related, as opposed to SaveAs-related, code.

doEditMenu
doEditMenu handles choices from the Edit menu. Recall that, in the case of monostyled TextEdit structures, TECut, TECopy,
and TEPaste do not copy/paste text to/from the scrap. This program, however, supports copying/pasting to/from the scrap.

Before the usual switch is entered, a handle to the TextEdit structure associated with the front window is retrieved.

The iCut case handles the Cut command. Firstly, the call to ClearCurrentScrap attempts to clear the scrap. If the call
succeeds, PurgeSpace establishes the size of the largest block in the heap that would be available if a general purge were to
occur. The next line gets the current selection length. If the selection length is greater than the available memory, the user is
advised via an error message. Otherwise, TECut is called to remove the selected text from the TextEdit structure and copy it
to the TextEdit private scrap. The scroll bar is adjusted, and TEToScrap is called to copy the private scrap to the scrap. If the
TEToScrap call is not successful, ClearCurrentScrap cleans up as best it can by emptying the scrap.

The iCopy case handles the Copy command. If the call to ClearCurrentScrap to empty the scrap is successful, TECopy is called
to copy the selected text from the TextEdit structure to the TextEdit private scrap. TEToScrap then copies the private scrap to
the scrap. If the TEToScrap call is not successful, ClearCurrentScrap cleans up as best it can by emptying the scrap.

The iPaste case handles the Paste command, which must not proceed if the paste would cause the TextEdit limit of 32,767
bytes to be exceeded. The third line establishes a value equal to the number of bytes in the TextEdit structure plus the
number of bytes of the 'TEXT' flavour type in the scrap. If this value exceeds the TextEdit limit, the user is advised via an
error message. Otherwise, TEFromScrap copies the scrap to TextEdit's private scrap, TEPaste inserts the private scrap into
the TextEdit structure, and the following line adjusts the scroll bar.

The iClear case handles the Clear command. TEDelete deletes the current selection range from the TextEdit structure and the
following line adjusts the scroll bar.

The iSelectAll case handle the Select All command. TESetSelect sets the selection range according to the first two parameters
(selStart and selEnd).

doGetSelectLength
doGetSelectLength returns a value equal to the length of the current selection.

doAdjustScrollbar
doAdjustScrollbar adjusts the vertical scroll bar.

The first two lines retrieve handles to the document structure and TextEdit structure associated with the window in question.

At the next block, the value in the nLines field of the TextEdit structure is assigned to the numberOfLines variable. The next
action is somewhat of a refinement and is therefore not essential. If the last character in the TextEdit structure is the return

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-55

character, numberOfLines is incremented by one. This will ensure that, when the document is scrolled to its end, a single
blank line will appear below the last line of text.

At the next block, the variable controlMax is assigned a value equal to the number of lines in the TextEdit structure less the
number of lines that will fit in the view rectangle. If this value is less than 0 (indicating that the number of lines in the
TextEdit structure is less than the number of lines that will fit in the view rectangle), controlMax is set to 0.
SetControlMaximum then sets the control maximum value. If controlMax is 0, the scroll bar is automatically unhighlighted by
the SetControlMaximum call.

The first line of the next block assigns to the variable controlValue a value equal to the number of text lines that the top of the
destination rectangle is currently "above" the top of the view rectangle. If the calculation returns a value less than 0 (that is,
the document has been scrolled fully down), controlValue is set to 0. If the calculation returns a value greater than the
current control maximum value (that is, the document has been scrolled fully up), controlValue is set to equal that value.
SetControlValue sets the control value to the value in controlValue. For example, if the top of the view rectangle is 2, the top
of the destination rectangle is -34 and the lineHeight field of the TextEdit structure contains the value 13, the control value
will be set to 3.

SetControlViewSize is called to advise the Control Manager of the height of the view rectangle. This will cause the scroll
box/scroller to be a proportional scroll box/scroller. (On Mac OS 8/9, this assumes that the user has selected Smart Scrolling
on in the Appearance control panel.)

With the control maximum value and the control value set, TEScroll is called to make sure the text is scrolled to the position
indicated by the scroll box/scroller. Extending the example in the previous paragraph, the second parameter in the TEScroll
call is 2 - (34 - (3 * 13)), that is, 0. In that case, no corrective scrolling actually occurs.

doAdjustCursor
doAdjustCursor is called when the kEventMouseMoved, and kEventWindowActivated event types are received. It adjusts the
cursor to the I-Beam shape when the cursor is over the content region less the scroll bar area, and to the arrow shape when
the cursor is outside that region. It is similar to the cursor adjustment function in the demonstration program
GworldPicCursIcn (Chapter 13).

doCloseWindow
doCloseWindow is called when the kEventWindowClose event type is received and when the user chooses Close from the File
menu. It disposes of the specified window. The associated scroll bar, the associated TextEdit structure and the associated
document structure are disposed of before the call to DisposeWindow.

doSaveAsFile, doOpenCommand, doOpenFile
The functions doSaveAsFile, doOpenCommand, and doOpenFile are document saving and opening functions, enabling the user
to open and save 'TEXT' documents. Since the real focus of this program is TextEdit, not file operations, the code is "bare
bones" and as brief as possible, Navigation Services 2.0 functions being used rather than the Navigation Services 3.0
functions used in the demonstration program Files (Chapter 18).

For a complete example of opening and saving monostyled 'TEXT' documents, see the demonstration program at Files
(Chapter 18).

doDrawDataPanel
doDrawDataPanel draws the data panel at the bottom of each window. Displayed in this panel are the values in the teLength,
nLines, lineHeight and destRect.top fields of the TextEdit structure and the contrlValue and contrlMax fields of the scroll bar's
control structure.

HelpDialog.c
defines
Constants are established for the index of error strings within a 'STR#' resource and 'TEXT', 'styl', and 'PICT' resource IDs.
kTextInset which will be used to inset the view and destination rectangles a few pixels inside a user pane's rectangle.

typedef
The first two data types are for a picture information structure and a document structure. (Note that one field in the
document structure is a pointer to a picture information structure.) The third data type will be used for saving and restoring
the background colour and pattern.

doHelp
doHelp is called when the user chooses the MonoTextEdit Help item in the Help menu.

The dialog will utilise a window event handler, a user pane drawing (callback) function, and a control action (callback)
function. The first block creates the associated universal procedure pointers.

The call to CreateNewWindow creates a new window of the movable modal class. NewHandle creates a block for a document
structure and the handle is stored in the window object.

21-56 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

The next block creates the dialog's controls and assigns an ID to each. In the case of the user pane control, SetControlData is
called to set a user pane drawing function. In the case of the scroll bar, the control reference is assigned to the appropriate
field of the dialog's document structure.

At the next block, the destination and view rectangles are both made equal to the user pane's rectangle, but inset four pixels
from the left and right and two pixels from the top and bottom. The call to TEStyleNew creates a multistyled TextEdit
structure based on those two rectangles.

A pointer to a picture information structure will eventually be assigned to a field in the document structure. For the moment,
that field is set to NULL.

At the next block, two global variables are assigned the resource IDs relating to the first Help topic's 'TEXT'/'styl' resource and
associated 'PICT' resources.

The next block calls the function doGetText which, amongst other things, loads the specified 'TEXT'/'styl' resources and inserts
the text and style information into the TextEdit structure.

The next block calls the function doGetPictureInfo which, amongst other things, searches for option-space characters in the
'TEXT' resource and, if option-space characters are found, loads a like number of 'PICT' resources beginning with the specified
ID.

NewRgn creates an empty region, which will be used to save the dialog's graphic's port's clipping region.

To complete the initial setting up, ShowWindow is called to makes the dialog visible, following which
RunAppModalLoopForWindow is called to run the nodal loop.

helpWindowEventHandler
helpWindowEventHandler is the event handler for the dialog. It responds to mouse clicks in the dialog's three controls.

If the push button was clicked, QuitAppModalLoopForWindow is called to terminate the modal loop and restore menu
activation/deactivation status to that which obtained prior to the call to RunAppModalLoopForWindow, and the dialog is closed
down.

Note that, if the click was in the scroll bar, TrackControl is called with a universal procedure pointer to an application-defined
action (callback) function is passed in the actionProc parameter.

If the click was in the pop-up menu button, the menu item chosen is determined, and the switch assigns the appropriate
'TEXT'/'styl' and 'PICT' resource IDs to the global variables which keep track of which of those resources are to be loaded and
displayed.

The next three lines get the view rectangle from the TextEdit structure, allowing the next blocks to perform the same "get
text" and "get picture information" actions as were preformed at start-up, but this time with the 'TEXT'/'styl' and 'PICT'
resources as determined within the preceding switch.

The call to doDrawPictures draws any pictures that might initially be located in the view rectangle.

userPaneDrawFunction
userPaneDrawFunction is the user pane drawing function set within doHelp.

The first line gets a reference to the user pane control's owning window. The next three lines get the user pane's rectangle,
insets that rectangle by one pixel all round, and then further expands it to the right edge of the scroll bar. At the next block, a
list box frame is drawn in the appropriate state, depending on whether the the movable modal dialog is currently the active
window.

The next block erases the previously defined rectangle with the white colour using the white pattern.

The next three lines retrieve the view rectangle from the TextEdit structure. The call to TEUpdate draws the text in the
TextEdit structure in the view rectangle. The call to doDrawPictures draws any pictures that might currently be located in the
view rectangle.

doGetText
doGetText is called when the dialog is first opened and when the user chooses a new item from the pop-up menu. Amongst
other things, it loads the 'TEXT'/'styl' resources associated with the current menu item and inserts the text and style
information into the TextEdit structure.

The first two lines get a handle to the TextEdit structure. The next two lines set the selection range to the maximum value
and then delete that selection. The destination rectangle is then made equal to the view rectangle and the scroll bar's value
is set to 0.

GetResource is called twice to load the specified 'TEXT'/'styl' resources, following which TEStyleInsert is called to insert the
text and style information into the TextEdit structure. Two calls to ReleaseResource then release the 'TEXT'/'styl' resources.

The next block gets the total height of the text in pixels.

At the next block, if the height of the text is greater than the height of the view rectangle, the local variable heightToScroll is
made equal to the total height of the text minus the height of the view rectangle. This value is then used to set the scroll
bar's maximum value. The scroll bar is then made active.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-57

SetControlViewSize is called to advise the Control Manager of the height of the view rectangle. This will cause the scroll box
to be a proportional scroll box.

If the height of the text is less than the height of the view rectangle, the scroll bar is made inactive.

true is returned if the GetResource calls did not return with false.

doGetPictureInfo
doGetPictureInfo is called after getText when the dialog is opened and when the user chooses a new item from the pop-up
menu. Amongst other things, it searches for option-space characters in the 'TEXT' resource and, if option-space characters
are found, loads a like number of 'PICT' resources beginning with the specified ID.

The first line gets a handle to the dialog's document structure.

If the picInfoRecPtr field of the document structure does not contain NULL, the currently loaded 'PICT' resources are released,
the picture information structures are disposed of, and the picInfoRecPtr field of the document structure is set to NULL.

The next line sets to 0 the field of the document structure which keeps track of the number of pictures associated with the
current 'TEXT' resource.

The next two lines get a handle to the TextEdit structure, then a handle to the block containing the actual text. This latter is
then used to assign the size of that block to a local variable. After two local variables are initialised, the block containing the
text is locked.

The next block counts the number of option-space characters in the text block. At the following block, if there are no option-
space characters in the block, the block is unlocked and the function returns.

A call to NewPtr then allocates a nonrelocatable block large enough to accommodate a number of picture information
structures equal to the number of option-space characters found. The pointer to the block is then assigned to the appropriate
field of the dialog's document structure.

The next line resets the offset value to 0.

The for loop repeats for each of the option-space characters found. GetPicture loads the specified 'PICT' resource (the
resource ID being incremented from the base ID at each pass through the loop) and assigns the handle to the appropriate
field of the relevant picture information structure. Munger finds the offset to the next option-space character and TEGetPoint
gets the point, based on the destination rectangle, of the bottom left of the character at that offset. TEGetStyle is called to
obtain the line height of the character at the offset and this value is subtracted from the value in the point's v field. The offset
is incremented and the rectangle in the picture structure's picFrame field is assigned to the bounds field of the picture
information structure. The next block then offsets this rectangle so that it is centred laterally in the destination rectangle with
its top offset from the top of the destination rectangle by the amount established at the line picturePoint.v -= lineHeight;.

The third last line assigns the number of pictures loaded to the appropriate field of the dialog's document structure. The block
containing the text is then unlocked. The function returns true if false has not previously been returned within the for loop.

actionFunction
actionFunction is the action function called from within the event filter (callback) function eventFilter. It is repeatedly called
by TrackControl while the mouse button remains down within the scroll bar. Its ultimate purpose is to determine the new
scrollbar value when the mouse-down is within the scroll arrows or gray areas/track of the scroll bar, and then call a separate
function to effect the actual scrolling of the text and pictures based on the new scrollbar value. (The scroll bar is the live
scrolling variant, so the CEDF automatically updates the control's value while the mouse remains down in the scroll
box/scroller.)

Firstly, if the cursor is still not within the control, execution falls through to the bottom of the function and the action function
exits.

The first block gets a pointer to the owner of the scrollbar, retrieves a handle to the dialog's document structure, gets a
handle to the TextEdit structure, gets the view rectangle, and assigns a value to the h field of a point variable equal to the left
of the view rectangle plus 4 pixels.

The switch executes only if the mouse-down is not in the scroll box.

In the case of the Up scroll arrow, the variable delta is assigned a value which will ensure that, after the scroll, the top of the
incoming line of text will be positioned cleanly at top of the view rectangle.

In the case of the Down scroll arrow, the variable delta is assigned a value which will ensure that, after the scroll, the bottom
of the incoming line of text will be positioned cleanly at bottom of the view rectangle.

In the case of the Up gray area/track, the variable delta is assigned a value which will ensure that, after the scroll, the top of
the top line of text will be positioned cleanly at the top of the view rectangle and the line of text which was previously at the
top will still be visible at the bottom of the view rectangle.

In the case of the Down gray area/track, the variable delta is assigned a value which will ensure that, after the scroll, the
bottom of the bottom line of text will be positioned cleanly at the bottom of the view rectangle and the line of text which was
previously at the bottom will still be visible at the top of the view rectangle.

21-58 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

The first line after the switch gets the pre-scroll scroll bar value. If the text is not fully scrolled up and a scroll up is called for,
or if the text is not fully scrolled down and a scroll down is called for, the current clipping region is saved, the clipping region is
set to the dialog's port rectangle, the scroll bar value is set to the required new value, and the saved clipping region is
restored. (TextEdit may have set the clipping region to the view rectangle, so it must be changed to include the scroll bar
area, otherwise the scroll bar will not be drawn.)

With the scroll bar's new value set and the scroll box redrawn in its new position, the function for scrolling the text and
pictures is called. Note that this last line will also be called if the mouse-down was within the scroll box.

doScrollTextAndPicts
doScrollTextAndPicts is called from actionFunction. It scrolls the text within the view rectangle and calls another function to
draw any picture whose rectangle intersects the "vacated" area of the view rectangle.

The first line sets the background colour to white and the background pattern to white.

The next two lines get a handle to the TextEdit structure. The next line determines the difference between the top of the
destination rectangle and the top of the view rectangle and the next subtracts from this value the scroll bar's new value. If
the result is zero, the text must be fully scrolled in one direction or the other, so the function simply returns.

If the text is not already fully scrolled one way or the other, TEScroll scrolls the text in the view rectangle by the number of
pixels determined at the fifth line.

If there are no pictures associated with the 'TEXT' resource in use, the function returns immediately after the text is scrolled.

The next consideration is the pictures and whether any of their rectangles, as stored in the picture information structure,
intersect the area of the view rectangle "vacated" by the scroll. At the if/else block, a rectangle is made equal to the
"vacated" area of the view rectangle, the if block catering for the scrolling up case and the else block catering for the scrolling
down case. This rectangle is passed as a parameter in the call to drawPictures.

doDrawPictures
doDrawPictures determines whether any pictures intersect the rectangle passed to it as a formal parameter and draws any
pictures that do.

The first two lines get handles to the dialog's document structure and the TextEdit structure.

The next line determines the difference between the top of the destination rectangle and the top of the view rectangle. This
will be used later to offset the picture's rectangle from destination rectangle coordinates to view rectangle coordinates. The
next line determines the number of pictures associated with the current 'TEXT' resource, a value which will be used to control
the number of passes through the following for loop.

Within the loop, the picture's rectangle is retrieved from the picture information structure and offset to the coordinates of the
view rectangle. SectRect determines whether this rectangle intersects the rectangle passed to drawPictures from
scrollTextAndPicts. If it does not, the loop returns for the next iteration. If it does, the picture's handle is retrieved,
LoadResource checks whether the 'PICT' resource is in memory and, if necessary, loads it, HLock locks the handle,
DrawPicture draws the picture, and HUnlock unlocks the handle. Before DrawPicture is called, the clipping region is
temporarily adjusted to equate to the rectangle passed to drawPictures from scrollTextAndPicts so as to limit drawing to that
rectangle.

doCloseHelp
doCloseHelp closes down the Help dialog.

The first two lines retrieve a handle to the dialog's document structure. The next two lines dispose of the region used to save
the clipping region. TEDispose disposes of the TextEdit structure. The next block disposes of any 'PICT' resources currently in
memory, together with the picture information structure. Finally, the window's document structure is disposed of, the window
itself is disposed of, and the graphics port saved in doHelp is set as the current port.

doSetBackgroundWhite
doSetBackgroundWhite sets the background colour to white and the background pattern to the pattern white.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-59

Demonstration Program DateTimeNumbers Listing
// ***
// DateTimeNumbers.c CARBON EVENT MODEL
// ***
//
// This program, which opens a single modeless dialog, demonstrates the formatting and display
// of dates, times and numbers.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple/Application, File, and Edit menus
// (preload, non-purgeable).
//
// • A 'DLOG' resource and associated 'dlgx', 'DITL', 'dfnt', and 'CNTL' resources
// (purgeable).
//
// • 'hdlg' and 'STR#' resources (purgeable) for balloon help and help tags.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>
#include <string.h>

//
………
…………………………………………………… defines

#define rMenubar 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iQuit 12
#define mEdit 130
#define iCut 3
#define iCopy 4
#define iPaste 5
#define iClear 6
#define rDialog 128
#define iStaticTextTodaysDate 2
#define iStaticTextCurrentTime 4
#define iEditTextTitle 10
#define iEditTextQuantity 11
#define iEditTextValue 12
#define iEditTextDate 13
#define iButtonEnter 18
#define iButtonClear 19
#define iStaticTextTitle 26
#define iStaticTextQuantity 27
#define iStaticTextUnitValue 28
#define iStaticTextTotalValue 29
#define iStaticTextDate 30
#define kReturn 0x0D
#define kEnter 0x03
#define kLeftArrow 0x1C
#define kRightArrow 0x1D
#define kUpArrow 0x1E
#define kDownArrow 0x1F
#define kBackspace 0x08
#define kDelete 0x7F
#define topLeft(r) (((Point *) &(r))[0])
#define botRight(r) (((Point *) &(r))[1])

//
………
…………………………… global variables

Boolean gRunningOnX = false;

21-60 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

DialogRef gDialogRef;
DateCacheRecord gDateCacheRec;
Boolean gInBackground;

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
OSStatus appEventHandler (EventHandlerCallRef,EventRef,void *);
OSStatus windowEventHandler (EventHandlerCallRef,EventRef,void *);
void doIdle (void);
void doMenuChoice (MenuID,MenuItemIndex);
void doCopyPString (Str255,Str255);
void doTodaysDate (void);
void doAcceptNewRecord (void);
void doUnitAndTotalValue (Str255,Str255);
void doDate (Str255);
void doAdjustCursor (WindowRef);
void doClearAllFields (void);
ControlKeyFilterResult numericFilter (ControlRef,SInt16 *,SInt16 *,EventModifiers *);
void helpTags (void);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 ControlKeyFilterUPP numericFilterUPP;
 ControlRef controlRef;
 EventTypeSpec applicationEvents[] = { { kEventClassApplication, kEventAppActivated },
 { kEventClassCommand, kEventProcessCommand },
 { kEventClassMouse, kEventMouseMoved } };
 EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowDrawContent },
 { kEventClassWindow, kEventWindowActivated },
 { kEventClassWindow, kEventWindowClose },
 { kEventClassMouse, kEventMouseDown },
 { kEventClassKeyboard, kEventRawKeyDown } };

 //
………
……………………… do preliminaries

 doPreliminaries();

 //
………
set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }

 gRunningOnX = true;
 }
 else
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 SetMenuItemCommandID(menuRef,iQuit,kHICommandQuit);
 }

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-61

 // ……… install application event handler and
a timer

 InstallApplicationEventHandler(NewEventHandlerUPP((EventHandlerProcPtr) appEventHandler),
 GetEventTypeCount(applicationEvents),applicationEvents,
 0,NULL);

 InstallEventLoopTimer(GetCurrentEventLoop(),0,TicksToEventTime(GetCaretTime()),
 NewEventLoopTimerUPP((EventLoopTimerProcPtr) doIdle),NULL,NULL);

 // ………………………………………………………………………… open modeless dialog, change attributes, and install handler

 if(!(gDialogRef = GetNewDialog(rDialog,NULL,(WindowRef) -1)))
 ExitToShell();

 ChangeWindowAttributes(GetDialogWindow(gDialogRef),kWindowStandardHandlerAttribute |
 kWindowCloseBoxAttribute,
 kWindowCollapseBoxAttribute);

 InstallWindowEventHandler(GetDialogWindow(gDialogRef),
 NewEventHandlerUPP((EventHandlerProcPtr) windowEventHandler),
 GetEventTypeCount(windowEvents),windowEvents,0,NULL);

 // ………… create universal procedure pointers for key filter, attach to two edit text controls

 numericFilterUPP = NewControlKeyFilterUPP((ControlKeyFilterProcPtr) numericFilter);

 GetDialogItemAsControl(gDialogRef,iEditTextQuantity,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlEditTextKeyFilterTag,
 sizeof(numericFilterUPP),&numericFilterUPP);

 GetDialogItemAsControl(gDialogRef,iEditTextValue,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlEditTextKeyFilterTag,
 sizeof(numericFilterUPP),&numericFilterUPP);

 // …………………………………………………………………………… set help tags, get and display today's date and show window

 if(gRunningOnX)
 helpTags();

 doTodaysDate();

 ShowWindow(GetDialogWindow(gDialogRef));

 // …………………………………………………………………………………… display today's date and initialise date cache structure

 InitDateCache(&gDateCacheRec);

 // ……
run application event loop

 RunApplicationEventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 MoreMasterPointers(64);
 InitCursor();
}

// *** appEventHandler

OSStatus appEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void * userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 HICommand hiCommand;
 MenuID menuID;
 MenuItemIndex menuItem;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {

21-62 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 case kEventClassApplication:
 if(eventKind == kEventAppActivated)
 SetThemeCursor(kThemeArrowCursor);
 break;

 case kEventClassCommand:
 if(eventKind == kEventProcessCommand)
 {
 GetEventParameter(eventRef,kEventParamDirectObject,typeHICommand,NULL,
 sizeof(HICommand),NULL,&hiCommand);
 menuID = GetMenuID(hiCommand.menu.menuRef);
 menuItem = hiCommand.menu.menuItemIndex;
 if((hiCommand.commandID != kHICommandQuit) &&
 (menuID >= mAppleApplication && menuID <= mEdit))
 {
 doMenuChoice(menuID,menuItem);
 result = noErr;
 }
 }
 break;

 case kEventClassMouse:
 if(eventKind == kEventMouseMoved)
 {
 doAdjustCursor(GetDialogWindow(gDialogRef));
 result = noErr;
 }
 break;
 }

 return result;
}

// ** windowEventHandler

OSStatus windowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void* userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 EventRecord eventRecord;
 SInt16 itemHit;
 SInt8 charCode;
 ControlRef controlRef;
 UInt32 finalTicks;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassWindow: // event class window
 ConvertEventRefToEventRecord(eventRef,&eventRecord);
 switch(eventKind)
 {
 case kEventWindowActivated:
 DialogSelect(&eventRecord,&gDialogRef,&itemHit);
 result = noErr;
 break;

 case kEventWindowClose:
 QuitApplicationEventLoop();
 result = noErr;
 break;
 }

 case kEventClassMouse: // event class mouse
 ConvertEventRefToEventRecord(eventRef,&eventRecord);
 switch(eventKind)
 {
 case kEventMouseDown:
 if(IsDialogEvent(&eventRecord))
 {
 if(DialogSelect(&eventRecord,&gDialogRef,&itemHit))
 {
 if(itemHit == iButtonEnter)
 {
 doAcceptNewRecord();

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-63

 doClearAllFields();
 }
 else if(itemHit == iButtonClear)
 doClearAllFields();
 }
 }
 doAdjustCursor(GetDialogWindow(gDialogRef));
 break;
 }
 break;

 case kEventClassKeyboard: // event class keyboard
 switch(eventKind)
 {
 case kEventRawKeyDown:
 ConvertEventRefToEventRecord(eventRef,&eventRecord);
 GetEventParameter(eventRef,kEventParamKeyMacCharCodes,typeChar,NULL,
 sizeof(charCode),NULL,&charCode);
 if((charCode == kReturn) || (charCode == kEnter))
 {
 GetDialogItemAsControl(gDialogRef,iButtonEnter,&controlRef);
 HiliteControl(controlRef,kControlButtonPart);
 Delay(8,&finalTicks);
 HiliteControl(controlRef,kControlEntireControl);
 doAcceptNewRecord();
 doClearAllFields();
 return noErr;
 }
 break;
 }
 break;
 }

 return result;
}

// ** doIdle

void doIdle(void)
{
 UInt32 rawSeconds;
 static UInt32 oldRawSeconds;
 Str255 timeString;
 ControlRef controlRef;

 if(gRunningOnX)
 IdleControls(GetDialogWindow(gDialogRef));

 GetDateTime(&rawSeconds);

 if(rawSeconds > oldRawSeconds)
 {
 TimeString(rawSeconds,true,timeString,NULL);

 GetDialogItemAsControl(gDialogRef,iStaticTextCurrentTime,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlStaticTextTextTag,timeString[0],
 &timeString[1]);
 Draw1Control(controlRef);

 oldRawSeconds = rawSeconds;
 }
}

// ** doMenuChoice

void doMenuChoice(MenuID menuID,MenuItemIndex menuItem)
{
 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mEdit:
 switch(menuItem)

21-64 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 {
 case iCut:
 DialogCut(gDialogRef);
 break;

 case iCopy:
 DialogCopy(gDialogRef);
 break;

 case iPaste:
 DialogPaste(gDialogRef);
 break;

 case iClear:
 DialogDelete(gDialogRef);
 break;
 }
 break;
 }
}

// *** doCopyPString

void doCopyPString(Str255 sourceString,Str255 destinationString)
{
 SInt16 stringLength;

 stringLength = sourceString[0];
 BlockMove(sourceString + 1,destinationString + 1,stringLength);
 destinationString[0] = stringLength;
}

// ** doTodaysDate

void doTodaysDate(void)
{
 UInt32 rawSeconds;
 Str255 dateString;
 ControlRef controlRef;

 GetDateTime(&rawSeconds);
 DateString(rawSeconds,longDate,dateString,NULL);

 GetDialogItemAsControl(gDialogRef,iStaticTextTodaysDate,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlStaticTextTextTag,dateString[0],
 &dateString[1]);
}

// *** doAcceptNewRecord

void doAcceptNewRecord(void)
{
 SInt16 theType;
 Handle theHandle;
 Rect theRect;
 Str255 titleString, quantityString, valueString, dateString;
 ControlRef controlRef;

 GetDialogItem(gDialogRef,iEditTextTitle,&theType,&theHandle,&theRect);
 GetDialogItemText(theHandle,titleString);

 GetDialogItem(gDialogRef,iEditTextQuantity,&theType,&theHandle,&theRect);
 GetDialogItemText(theHandle,quantityString);

 GetDialogItem(gDialogRef,iEditTextValue,&theType,&theHandle,&theRect);
 GetDialogItemText(theHandle,valueString);

 GetDialogItem(gDialogRef,iEditTextDate,&theType,&theHandle,&theRect);
 GetDialogItemText(theHandle,dateString);

 if(titleString[0] == 0 || quantityString[0] == 0 || valueString[0] == 0 ||
 dateString[0] == 0)
 {
 SysBeep(10);
 return;
 }

 GetDialogItemAsControl(gDialogRef,iStaticTextTitle,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlStaticTextTextTag,titleString[0],

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-65

 &titleString[1]);
 Draw1Control(controlRef);

 GetDialogItemAsControl(gDialogRef,iStaticTextQuantity,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlStaticTextTextTag,quantityString[0],
 &quantityString[1]);
 Draw1Control(controlRef);

 doUnitAndTotalValue(valueString,quantityString);

 doDate(dateString);
}

// *** doUnitAndTotalValue

void doUnitAndTotalValue(Str255 valueString, Str255 quantityString)
{
 Handle itl4ResourceHdl;
 SInt32 numpartsOffset;
 SInt32 numpartsLength;
 NumberParts *numpartsTablePtr;
 Str255 formatString = "\p'$'###,###,###.00;'Valueless';'Valueless'";
 NumFormatString formatStringRec;
 Str255 formattedNumString;
 extended80 value80Bit;
 SInt32 quantity;
 double valueDouble;
 FormatResultType result;
 ControlRef controlRef;

 GetIntlResourceTable(smSystemScript,iuNumberPartsTable,&itl4ResourceHdl,&numpartsOffset,
 &numpartsLength);
 numpartsTablePtr = (NumberPartsPtr) ((SInt32) *itl4ResourceHdl + numpartsOffset);

 StringToFormatRec(formatString,numpartsTablePtr,&formatStringRec);

 StringToExtended(valueString,&formatStringRec,numpartsTablePtr,&value80Bit);
 ExtendedToString(&value80Bit,&formatStringRec,numpartsTablePtr,formattedNumString);

 GetDialogItemAsControl(gDialogRef,iStaticTextUnitValue,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlStaticTextTextTag,
 formattedNumString[0],&formattedNumString[1]);
 Draw1Control(controlRef);

 StringToNum(quantityString,&quantity);

 valueDouble = x80tod(&value80Bit);
 valueDouble = valueDouble * quantity;
 dtox80(&valueDouble,&value80Bit);

 result = ExtendedToString(&value80Bit,&formatStringRec,numpartsTablePtr,
 formattedNumString);

 if(result == fFormatOverflow)
 doCopyPString("\p(Too large to display)",formattedNumString);

 GetDialogItemAsControl(gDialogRef,iStaticTextTotalValue,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlStaticTextTextTag,
 formattedNumString[0],&formattedNumString[1]);
 Draw1Control(controlRef);
}

// ** doDate

void doDate(Str255 dateString)
{
 SInt32 lengthUsed;
 LongDateRec longDateTimeRec;
 LongDateTime longDateTimeValue;
 ControlRef controlRef;

 longDateTimeRec.ld.hour = 0;
 longDateTimeRec.ld.minute = 0;
 longDateTimeRec.ld.second = 0;

 StringToDate((Ptr) dateString + 1,dateString[0],&gDateCacheRec,&lengthUsed,
 &longDateTimeRec);

 LongDateToSeconds(&longDateTimeRec,&longDateTimeValue);

21-66 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

 LongDateString(&longDateTimeValue,longDate,dateString,NULL);

 GetDialogItemAsControl(gDialogRef,iStaticTextDate,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlStaticTextTextTag,dateString[0],
 &dateString[1]);
 Draw1Control(controlRef);
}

// ** doAdjustCursor

void doAdjustCursor(WindowRef windowRef)
{
 GrafPtr oldPort;
 RgnHandle arrowRegion,iBeamRegion;
 ControlRef controlRef;
 Rect iBeamRect;
 Point mouseLocation;

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 arrowRegion = NewRgn();
 iBeamRegion = NewRgn();

 SetRectRgn(arrowRegion,-32768,-32768,32767,32767);

 GetKeyboardFocus(windowRef,&controlRef);
 GetControlBounds(controlRef,&iBeamRect);

 LocalToGlobal(&topLeft(iBeamRect));
 LocalToGlobal(&botRight(iBeamRect));

 RectRgn(iBeamRegion,&iBeamRect);
 DiffRgn(arrowRegion,iBeamRegion,arrowRegion);

 GetMouse(&mouseLocation);
 LocalToGlobal(&mouseLocation);

 if(PtInRgn(mouseLocation,iBeamRegion))
 SetThemeCursor(kThemeIBeamCursor);
 else
 SetThemeCursor(kThemeArrowCursor);

 DisposeRgn(arrowRegion);
 DisposeRgn(iBeamRegion);

 SetPort(oldPort);
}

// ** doClearAllFields

void doClearAllFields(void)
{
 SInt16 a;
 ControlRef controlRef;
 Str255 theString = "\p";

 for(a = iEditTextTitle;a <= iEditTextDate;a++)
 {
 GetDialogItemAsControl(gDialogRef,a,&controlRef);
 SetControlData(controlRef,kControlEntireControl,kControlEditTextTextTag,theString[0],
 &theString[1]);
 Draw1Control(controlRef);

 if(a == iEditTextTitle)
 SetKeyboardFocus(GetDialogWindow(gDialogRef),controlRef,kControlFocusNextPart);
 }
}

// *** numericFilter

ControlKeyFilterResult numericFilter(ControlRef controlRef,SInt16* keyCode,SInt16 *charCode,
 EventModifiers *modifiers)
{
 if(((char) *charCode >= '0') && ((char) *charCode <= '9') || (char) *charCode == '.' ||
 (BitTst(modifiers,15 - cmdKeyBit)))
 {
 return kControlKeyFilterPassKey;
 }

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-67

 switch(*charCode)
 {
 case kLeftArrow:
 case kRightArrow:
 case kUpArrow:
 case kDownArrow:
 case kBackspace:
 case kDelete:
 return kControlKeyFilterPassKey;
 break;
 }

 SysBeep(10);
 return kControlKeyFilterBlockKey;
}

// ** helpTags

void helpTags(void)
{
 HMHelpContentRec helpContent;
 SInt16 a;
 static SInt16 itemNumber[7] = { 1,3,21,22,23,24,25 };
 ControlRef controlRef;

 HMSetTagDelay(5);
 HMSetHelpTagsDisplayed(true);
 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideTopCenterAligned;

 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 128;

 for(a = 1;a <= 7; a++)
 {
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = a;
 GetDialogItemAsControl(gDialogRef,itemNumber[a - 1],&controlRef);
 HMSetControlHelpContent(controlRef,&helpContent);
 }
}

// ***

21-68 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

Demonstration Program DateTimeNumbers Comments
When this program is run, the user should enter data in the four edit text controls, using the tab key or mouse clicks to select
the required control and pressing the Return key or clicking the Enter Record button when data has been entered in all
controls. Note that numeric filters are used in the Quantity and Value edit text controls.

In order to observe number formatting effects, the user should occasionally enter very large numbers and negative numbers
in the Value field. In order to observe the effects of date string parsing and formatting, the user should enter dates in a
variety of formats, for example: "2 Mar 95", "2/3/95", "March 2 1995", "2 3 95", etc.

Global Variables
gDateCacheRec is used within the function doDate.

main
The call to InstallEventLoopTimer installs a timer which will fire repeatedly at the interval returned by the call to
GetCaretTime. When the timer fires, the function doIdle is called. In addition to calling IdleControls, doIdle updates the
current time displayed in a static text control in the top of the dialog.

doTadaysDate is called to get the date and set it in a static text control at the top of the dialog.

In the function doDate, the function that creates the long date-time structure takes an initialised date cache structure as a
parameter. The call to InitDateCache initialises a date cache structure.

windowEventHandler
Note that all events are passed to DialogSelect.

When the kEventMouseDown event is received, if the Enter Record push button was hit, the function doAcceptNewRecord is
called, following which doClearAllFields is called to clear all of the edit text controls. The same occurs when the
kEventRawKeyDown event is received if the key pressed was Return or Enter.

doIdle
doIdle, which is called when the timer fires, blinks the insertion point caret and sets the current time in the static text control
at top-right in the dialog.

If the program is running on Mac OS 8/9, IdleControls is called to ensure that the caret blinks regularly in the edit text control
with current keyboard focus. (On Mac OS X, these controls have their own in-built timers.)

GetDateTime retrieves the "raw" seconds value, as known to the system. (This is the number of seconds since 1 Jan 1904.) If
that value is greater than the value retrieved the last time doIdle was called, TimeString converts the raw seconds value to a
string containing the time formatted according to flags in the numeric format ('itl0') resource. (Since NULL is specified in the
resource handle parameter, the appropriate 'itl0' resource for the current script system is used.) This string is then set in the
static text control, following which Draw1Control is called to redraw the control. The retrieved raw seconds value is assigned
to the static variable oldRawSeconds for use next time doIdle is called.

doTodaysDate
doTodaysDate sets the date in the static text control at top-left of the dialog.

GetDateTime gets the raw seconds value, as known to the system. DateString converts the raw seconds value to a string
containing a date formatted in long date format according to flags in the numeric format ('itl0') resource. (Since NULL is
specified in the resource handle parameter, the appropriate 'itl0' resource for the current script system is used.) This string is
then set in the static text control.

doAcceptNewRecord
doAcceptNewRecord is called when the Return or Enter key is pressed, or when the Enter Record button is clicked. Assuming
each edit text control contains at least one character of text, it calls other functions to format (where necessary) and display
strings in the "Last Record Entered" group box area.

The calls to GetDialogItem get the handle in the hText field of each edit text control's TextEdit structure, allowing the calls to
GetDialogItemText to get the text into four local variables of type Str255.

If the length of any of these strings is 0, the system alert sound is played and doAcceptNewRecord returns.

The text from the Item Title and Quantity edit text controls are set in the relevant static text controls within the Last Record
Entered group box, and DrawIControl is called to draw those controls. doUnitAndTotalValue and doDate are then called.

doUnitAndTotalValue
doUnitAndTotalValue is called by doAcceptNewRecord to convert the string from the Value edit text control to a floating point
number, convert that number to a formatted number string, set that string in the relevant static text control, convert the
string from the Quantity edit text control to an integer, multiply the floating point number by the integer to arrive at the "Total
Value" value, convert the result to a formatted number string, and set that string in the relevant static text control.

A pointer to a number parts table is required by the functions that convert between floating point numbers and strings.
Accordingly, the first three lines get the required pointer.

Text, TextEdit, Dates, Times, and Numbers Version 1.0 21-69

StringToFormatRec converts the number format specification string into the internal numeric representation required by the
functions that convert between floating point numbers and strings.

StringToExtended converts the received Value string into a floating point number of type extended (80 bits).
ExtendedToString converts that number back to a string, formatted according to the internal numeric representation of the
number format specification string. That string is then set in the relevant static text control and Draw1Control is called to
draw that control.

The intention now is to multiply the quantity by the unit value to arrive at a total value. The string received in the
quantityString formal parameter is converted to an integer value of type SInt32 by StringToNum. The extended80 value is
converted to a value of type double before the multiplication occurs. The result of the multiplication is assigned to the
variable of type double. This is then converted to an extended80.

The extended80 value is then passed in the first parameter of ExtendedToString for conversion to a formatted string. If
ExtendedToString does not return fFormatOverflow, the formatted string is set in the relevant static text control and
Draw1Control is called to draw that control.

doDate
doDate is called by doAcceptNewRecord to create a long date-time structure from the string in the "Date" edit text control,
format the date as a string (long date format), and set that string in the relevant static text control.

A pointer to the string containing the date as entered by the user, and the length of that string, are passed in the call to
StringToDate. StringToDate parses the input string and fills in the relevant fields of the long date-time structure.

The function StringToDate fills in only the year, month, day, and day of the week fields of a long date-time structure. The
function StringToTime fills in the hour, minute, and second. If you do not call StringToTime, as is the case here, you need to
zero the time-related fields of the long date-time structure. If this is not done, the call to LongDateToSeconds will return an
erroneous value. (LongDateToSeconds always assumes that all the fields of the long date-time structure passed to it are
valid.)

LongDateToSeconds converts the long date-time structure to a long date-time value. The long date-time value is then passed
as a parameter to LongDateString, which converts the long date-time value to a long format date string formatted according
to the specified international resource. (In this case, NULL is passed as the international resource parameter, meaning that
the appropriate 'itl1' resource for the current script system is used.)

The formatted date string is then set in the relevant static text control and Draw1Control is called to draw that control.

21-70 Version 1.0 Text, TextEdit, Dates, Times, and Numbers

	TEXT, TEXTEDIT, DATES, TIMES, AND NUMBERS
	Demonstration Programs: MonoTextEdit and DateTimeNumbers
	Introduction
	This chapter addresses:
	More on Text
	Characters, Character Sets and Codes, Glyphs, Typefaces, Styles, Fonts and Font Families
	Characters and Character Sets and Codes

	FIG 1 - THE STANDARD ROMAN CHARACTER SET
	Glyphs
	Typefaces
	Styles
	Fonts and Font Families

	Fonts on the Macintosh are resources. The resource types are as follows:
	Font Measurements
	Base Line, Ascent Line and Descent Line
	Glyph Origin, Left Side Bearing, and Advance Width
	Font Size

	The Font Manager and QuickDraw
	Aspects of Text Editing — Caret Position, Text Offsets, Selection Range, Insertion Point, and Highlighting
	Caret Position and Text Offset

	The relationship between caret position, insertion point and offset is illustrated at Fig 3.
	Converting Screen Position to Text Offset
	Selection Range and Insertion Points
	Highlighting
	Outline Highlighting

	Keyboards and Text

	Introduction to TextEdit
	Editing Tasks Performed by TextEdit

	The fundamental editing tasks which TextEdit can perform for your application are as follows:
	TextEdit Options

	You can use TextEdit at different levels of complexity.
	Using TextEdit Indirectly
	Displaying Static Text
	Text Handling — Monostyled Text
	Text Handling — Multistyled Text
	Caret Position and Movement in TextEdit
	Automatic Scrolling
	TextEdit's Private, Null, and Style Scraps
	Text Alignment
	Primary TextEdit Data Structures
	The TextEdit Structure
	Field Descriptions

	The Dispatch Structure

	Monostyled TextEdit
	Creating, and Disposing of, a Monostyled TextEdit Structure
	Creating a Monostyled TextEdit Structure
	Disposing of an TextEdit Structure

	Memory allocated for a TextEdit structure may be released by calling TEDispose.
	Setting the Text
	Calling TESetText
	Changing the hText Field

	Responding to Events
	Activate Events
	Update Events — Calling TEUpdate
	Mouse-Down Events — Calling TEClick
	Key-Down Events - Accepting Text Input

	Caret Blinking
	Cutting, Copying, Pasting, Inserting, and Deleting Text
	Cutting, Copying, and Pasting
	Inserting and Deleting Text

	Setting the Selection Range or Insertion Point
	Enabling, Disabling, and Customising Automatic Scrolling
	Enabling and Disabling
	Customising

	Scrolling Text
	Forcing the Selection Range Into the View

	Setting Text Alignment
	Saving and Opening TextEdit Documents

	Multistyled TextEdit
	Text With Multiple Styles — Style Runs, Text Segments, Font Runs, Character Attributes
	Additional TextEdit Data Structures for Multistyled Text
	Creating a Multistyled TextEdit Structure

	The multistyled TextEdit structure is created by calling TEStyleNew.
	Inserting Text

	Formatting and Displaying Dates, Times, and Numbers
	Preamble — The Text Utilities and International Resources
	The Text Utilities
	International Resources

	Date and Time
	Date and Time Value Representations

	The Operating System provides the following differing representations of date and time values:
	The date-time (DateTimeRec) and the long date-time (LongDateRec) structures are as follows:
	Obtaining Date-Time Values and Structures
	Converting Between Values and Structures
	Converting Date-Time Values Into Strings
	Converting Date-Time Strings Into Internal Numeric Representation
	Numbers
	Integers
	Number Format Specification Strings

	Parts. Each number format specification string contains up to three parts:
	Elements. A number format specification string can contain the following elements:
	Converting Between Floating Point Numbers and Numeric Strings

	Main TextEdit Constants, Data Types and Functions
	Constants
	Alignment
	Feature or Bit Definitions for TEFeatureFlag feature Parameter

	Data Types
	TextEdit Structure
	Style Structure
	Text Style Structure

	Functions
	Creating and Disposing of TextEdit Structures
	Activating and Deactivating a TextEdit Structure
	Setting and Getting aTextEdit Structure's Text
	Setting the Caret and Selection Range
	Displaying and Scrolling Text
	Modifying the Text of a TextEdit Structure
	Managing the TextEdit Private Scrap
	Using Byte Offsets and Corresponding Points
	Customising TextEdit
	Additional TextEdit Features

	Main Constants, Data Types and Functions Relating to Dates, Times and Numbers
	Constants
	StringToDate and StringToTime Status Values
	FormatResultType Values for Numeric Conversion Functions

	Data Types
	Data Cache Structure
	Number Format Specification Structure

	Functions
	Getting Date-Time Values and Structures
	Converting Between Date-Time values and Structures
	Converting Date-Time Strings Into Internal Numeric Representation
	Converting Long Date and Time Values Into Strings
	Converting Between Integers and Strings
	Using Number Format Specification Strings For International Number Formatting
	Converting Between Strings and Floating Point Numbers
	Moving To and From Extended

	Demonstration Program MonoTextEdit Listing
	Demonstration Program MonoTextEdit Comments
	Text Editor

	• Open a new document window, open an existing 'TEXT' file for display in a new document window, and save a document to a 'TEXT' file. (A 'TEXT' file titled "MonoTextEdit Document" is included.)
	• Enter new text and use the Edit menu Cut, Copy, Paste, and Clear commands to edit the text. (Pasting between documents and other applications is supported.)
	• Select text by clicking and dragging, double-clicking a word, shift-clicking, and choosing the Select All command from the Edit menu. Also select large amounts of text by clicking in the text and dragging the cursor above or below the window so as to invoke auto-scrolling.
	• Scroll a large document by dragging the scroll box/scroller (live scrolling is used), clicking once in a scroll arrow or gray area/track, and holding the mouse down in a scroll arrow or gray area/track.
	Help Dialog
	MonoTextEdit.c
	defines
	typedefs
	Global Variables
	main
	windowEventHandler
	doIdle
	doKeyEvent
	scrollActionFunction
	doInContent
	doDrawContent
	doActivateDeactivate
	doNewDocWindow
	customClickLoop
	doSetScrollBarValue
	doAdjustMenus
	doMenuChoice
	doFileMenu
	doEditMenu
	doGetSelectLength
	doAdjustScrollbar
	doAdjustCursor
	doCloseWindow
	doSaveAsFile, doOpenCommand, doOpenFile
	doDrawDataPanel

	HelpDialog.c
	defines
	typedef
	doHelp
	helpWindowEventHandler
	userPaneDrawFunction
	doGetText

	GetResource is called twice to load the specified 'TEXT'/'styl' resources, following which TEStyleInsert is called to insert the text and style information into the TextEdit structure. Two calls to ReleaseResource then release the 'TEXT'/'styl' resources.
	doGetPictureInfo
	actionFunction
	doScrollTextAndPicts
	doDrawPictures
	doCloseHelp
	doSetBackgroundWhite

	Demonstration Program DateTimeNumbers Listing
	Demonstration Program DateTimeNumbers Comments
	Global Variables
	main
	windowEventHandler
	doIdle
	doTodaysDate
	doAcceptNewRecord
	doUnitAndTotalValue
	doDate

